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Similar Ranking Problems
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Multi-Objective Optimization

* Most ranking / recommendation
problems try to balance conflicting

metrics.
* |ncrease in one causes decrease in
another.
* Feed : Increase engagement but not

drop revenue
* Notifications / Emails: Decrease sends

but do not drop sessions.
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Optimization Formulation - Notification
Example

* Minimize sends such that expected sessions does not drop.

© X" Probability of sending item j to user i

. qJ Prior probability of sending item j to user i

S, Probability that the user will visit given item j is sent to user i
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Quadratically Constrained Quadratic Problem

(QCQP)

* The probability s that user will visit depends not only on the

current notification but also on many previous notifications sent.
* For example total sends till the last visit.
* No. of flashy Ul pushes, etc

* |f approximate it as a linear function, sa
PP » 53y s = Px

1 2 J
Sij = PijTil T PijTi2 + ... T PijTiJ
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Quadratically Constrained Quadratic Problem

(QCQP)

e Original Problem:

e Derived Problem:

I J I
Minicmize Z Z i+ % Z Z ¥z — G
1=1 j=1 i=1 =1
I J
subject to Z.’B@,,quj,j >C
i=1 j=1
RS g |

Minimize x"1+ 2x - qf

subject to x'Px > C
0<x<1
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Overview

e Challenges

 Method of solving the Large-Scale QCQP
* Approximation
* Sampling techniques

e Theoretical Guarantees

* Empirical Validation
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Challenges of Solving a QCQP

* Itis NP hard in the general framework.

e Usual Solutions
* Semidefinite Programming
* Relaxation Linearization Technique

« Both convert the problem from n variables to O(n?) and hence
becomes prohibitively expensive for large n.

BayLearn 2017 9




Methodology

* Main ldea: QCQP to QP Approximation. Solving the QP by
state-of-the-art methods.

e Original Problem: Constraint Set:

£
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QCQP to QP Approximations

e Derived problem becomes:

Minimize  (x —a)’ A(x —a)

subject to (x — b)TB(xj —b)<b
Cx =rc.

fory=1,...,N

* Given a fixed N, the accuracy of the solution solely depends on the

choice of the points SN I
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Why not Random Points?

* If you are lucky it
can be good, but if
not it can be
arbitrarily bad.

* (Caneven getan
unbounded region
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Theoretical Results

Theorem 1: limy_ o |[|x*(N) — x*|| =0

Theorem 2: If x*(N) converges to x* in the rate O(g(N)), then

|f(x*(N)) = f(x)] < Cag(N)
and the function g(N) can be explicitly identitied for different
constraint domains.
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Comparative Study

Table 1: The optimal objective value and convergence time

n Our method | Sampling on [0,1]"™ | Sampling on S™ | SDP relaxation | RLT relaxation Exact
2 3.00 2.99 2.95 3.07 3.08 3.07
(4.61s) (4.74s) (6. 11s) (0.52s) (0.518) (0.49)
i 206.85 205.21 206.5 252.88 252.88 252.88
(5.04s) (5.655) (5.265) (0.53s) (0.518) (0.51)
- 6291.4 4507.8 5052.2 6841.6 6841.6 6841.6
(6.565) (6.28s) (6.69s) (2.05s) (1.86s) 0.54) |
50 99668 15122 26239 1.11 x 10° 1.08 x 10° 1.11 x 10° |
(15.55s) (18.98s) (17.32s) (4.315s) (2.96s) (0.64)
100 | 140% 10° 69746 1.24 x 10° 1.62 x 10° 1.52 x 10° 1.62 x 10°
(58.41s) (1.03m) (54.69s) (30.41s) (15.365) (2.30s)
2.24 x 10" 8.34 x 10° 9.02 x 10°
1000 | ia.g7em) (15.63m) (15.32m) Na NA NA
5 | 3.10 x 10® 732 % 10" 8.39 x 107
1071 (25.82m) (24.59m) (27.23m) = e e
6 | 391 x10° 2.69 x 10° 7.53 x 10°
10" 1 "(38.30m) (39.15m) (37.21m) Na NA N
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Comparative Study

log (Relative Square Error)

50
Dimension of the Problem

Method
Low Discrepancy Sampling
=8= Uniform Sampling on Square

-~ Uniform Sampling on Sphere
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Future Work

 Comparison with
 Commercial solvers such as CPLEX.
e Large-Scale SDP solvers based on ADMM.

* Finding explicit bounds for common domains.

* Finding accurate rates of comparison by considering the growth of
the eigenvalues of the matrices.
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Summary & Takeaways

* This method gives a highly scalable solution to the QCQP problem,
with a theoretical guarantee of convergence.

e Rather than using random points it is better to use
low-discrepancy points since random points can lead to arbitrarily
bad results.

 (Can be used in several applications which were blocked because of
the scale of the problem.
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Thank you for your attention!




