

Large-Scale QCQP via Low-Discrepancy Sequences

Kinjal Basu, Ankan Saha, Shaunak Chatterjee

BayLearn 2017

Motivation

Similar Ranking Problems

Examples:

- (a) People You May Know (PYMK)
- (b) Notifications

Multi-Objective Optimization

- Most ranking / recommendation problems try to balance conflicting metrics.
- Increase in one causes decrease in another.
 - Feed: Increase engagement but not drop revenue
 - **Notifications / Emails**: Decrease sends but do not drop sessions.

Optimization Formulation - Notification Example

- Minimize sends such that expected sessions does not drop.

- x_{ij} Probability of sending item j to user i
 q_{ij} Prior probability of sending item j to user i
 s_{ii} Probability that the user will visit given item j is sent to user i

Minimize
$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} + \frac{\gamma}{2} \sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - q_{i,j})^2$$
subject to
$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} s_{i,j} \ge C$$
$$0 \le x_{i,j} \le 1$$

Quadratically Constrained Quadratic Problem (QCQP)

- The probability s_{ij} that user will visit depends not only on the current notification but also on many previous notifications sent.
 - For example total sends till the last visit.
 - No. of flashy UI pushes, etc
- If approximate it as a linear function, say $oldsymbol{s} = \mathbf{P} \mathbf{x}$

•
$$s_{ij} = p_{ij}^1 x_{i1} + p_{ij}^2 x_{i2} + \ldots + p_{ij}^J x_{iJ}$$

Quadratically Constrained Quadratic Problem (QCQP)

• Original Problem:

Minimize
$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} + \frac{\gamma}{2} \sum_{i=1}^{I} \sum_{j=1}^{J} (x_{i,j} - q_{i,j})^2$$

subject to
$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{i,j} s_{i,j} \ge C$$

$$0 \le x_{i,j} \le 1$$

Derived Problem:

Minimize
$$\mathbf{x}^T \mathbf{1} + \frac{\gamma}{2} ||\mathbf{x} - \mathbf{q}||^2$$

subject to $\mathbf{x}^T \mathbf{P} \mathbf{x} \ge C$
 $0 \le \mathbf{x} \le 1$

Overview

- Challenges
- Method of solving the Large-Scale QCQP
 - Approximation
 - Sampling techniques
- Theoretical Guarantees
- Empirical Validation

Challenges of Solving a QCQP

- It is NP hard in the general framework.
- Usual Solutions
 - Semidefinite Programming
 - Relaxation Linearization Technique
- Both convert the problem from n variables to O(n²) and hence becomes prohibitively expensive for large n.

Methodology

- Main Idea: QCQP to QP Approximation. Solving the QP by state-of-the-art methods.
- Original Problem:

Minimize
$$(\mathbf{x} - \mathbf{a})^T \mathbf{A} (\mathbf{x} - \mathbf{a})$$

subject to $(\mathbf{x} - \mathbf{b})^T \mathbf{B} (\mathbf{x} - \mathbf{b}) \leq \tilde{b}$,
 $\mathbf{C} \mathbf{x} = \mathbf{c}$.

Constraint Set:

QCQP to QP Approximations

Derived problem becomes:

Minimize
$$(\mathbf{x} - \mathbf{a})^T \mathbf{A} (\mathbf{x} - \mathbf{a})$$

subject to $(\mathbf{x} - \mathbf{b})^T \mathbf{B} (\mathbf{x}_j - \mathbf{b}) \leq \tilde{b}$ for $j = 1, \dots, N$
 $\mathbf{C} \mathbf{x} = \mathbf{c}$.

• Given a fixed N, the accuracy of the solution solely depends on the choice of the points $x_1, ..., x_N$.

Why not Random Points?

 If you are lucky it can be good, but if not it can be arbitrarily bad.

 Can even get an unbounded region

Optimal Choice of Points

Low-Discrepancy Points

Theoretical Results

Theorem 1:
$$\lim_{N\to\infty} ||{\bf x}^*(N) - {\bf x}^*|| = 0$$

Theorem 2: If $x^*(N)$ converges to x^* in the rate O(g(N)), then

$$|f(\mathbf{x}^*(N)) - f(\mathbf{x}^*)| \le C_2 g(N)$$

and the function g(N) can be explicitly identified for different constraint domains.

Comparative Study

Table 1: The optimal objective value and convergence time

n	Our method	Sampling on $[0,1]^n$	Sampling on \mathbb{S}^n	SDP relaxation	RLT relaxation	Exact
5	3.00	2.99	2.95	3.07	3.08	3.07
	(4.61s)	(4.74s)	(6. 11s)	(0.52s)	(0.51s)	(0.49)
10	206.85	205.21	206.5	252.88	252.88	252.88
	(5.04s)	(5.65s)	(5.26s)	(0.53s)	(0.51s)	(0.51)
20	6291.4	4507.8	5052.2	6841.6	6841.6	6841.6
	(6.56s)	(6.28s)	(6.69s)	(2.05s)	(1.86s)	(0.54)
50	99668	15122	26239	1.11×10^{5}	1.08×10^{5}	$1.11 imes 10^5$
	(15.55s)	(18.98s)	(17.32s)	(4.31s)	(2.96s)	(0.64)
100	1.40×10^{6}	69746	1.24×10^{6}	$\boldsymbol{1.62\times10^6}$	1.52×10^{6}	$\boxed{1.62\times10^6}$
	(58.41s)	(1.03m)	(54.69s)	(30.41s)	(15.36s)	(2.30s)
1000	2.24×10^{7}	8.34×10^{6}	9.02×10^{6}	NA	NA	NA
	(14.87m)	(15.63m)	(15.32m)			
10^5	3.10×10^{8}	7.12×10^{7}	8.39×10^{7}	NA	NA	NA
	(25.82m)	(24.59m)	(27.23m)			
10^{6}	3.91×10^{9}	2.69×10^{8}	7.53×10^{8}	NA	NA	NA
	(38.30m)	(39.15m)	(37.21m)			

Comparative Study

Future Work

- Comparison with
 - Commercial solvers such as CPLEX.
 - Large-Scale SDP solvers based on ADMM.

Finding explicit bounds for common domains.

 Finding accurate rates of comparison by considering the growth of the eigenvalues of the matrices.

Summary & Takeaways

- This method gives a highly scalable solution to the QCQP problem, with a theoretical guarantee of convergence.
- Rather than using random points it is better to use low-discrepancy points since random points can lead to arbitrarily bad results.
- Can be used in several applications which were blocked because of the scale of the problem.

Thank you for your attention!

