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Motivation
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Similar Ranking Problems

Examples:

(a) People You May 
Know (PYMK)

(b) Notifications
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Multi-Objective Optimization

• Most ranking / recommendation 
problems try to balance conflicting 
metrics. 

• Increase in one causes decrease in 
another.  

• Feed : Increase engagement but not 
drop revenue

• Notifications / Emails: Decrease sends 
but do not drop sessions.
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Optimization Formulation - Notification 
Example

• Minimize sends such that expected sessions does not drop.
• x

ij 
- Probability of sending item j to user i

• q
ij 

- Prior probability of sending item j to user i 
• s

ij
 - Probability that the user will visit given item j is sent to user i
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Quadratically Constrained Quadratic Problem 
(QCQP)

• The probability s
ij

 that user will visit depends not only on the 
current notification but also on many previous notifications sent.

• For example total sends till the last visit.
• No. of flashy UI pushes, etc

• If approximate it as a linear function, say 

•  
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• Original Problem:

• Derived Problem:

Quadratically Constrained Quadratic Problem 
(QCQP)
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Overview

• Challenges

• Method of solving the Large-Scale QCQP
• Approximation
• Sampling techniques

• Theoretical Guarantees

• Empirical Validation
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Challenges of Solving a QCQP

• It is NP hard in the general framework.

• Usual Solutions
• Semidefinite Programming
• Relaxation Linearization Technique

• Both convert the problem from n variables to O(n2) and hence 
becomes prohibitively expensive for large n.
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Methodology

• Main Idea: QCQP to QP Approximation. Solving the QP by 
state-of-the-art methods.

• Original Problem:                                         Constraint Set:
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QCQP to QP Approximations

• Derived problem becomes:

• Given a fixed N, the accuracy of the solution solely depends on the 
choice of the points x

1
, …, x

N
.
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Why not Random Points?

• If you are lucky it 
can be good, but if 
not it can be 
arbitrarily bad.

• Can even get an 
unbounded region
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Optimal Choice of Points

• Low-Discrepancy Points
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Theoretical Results

Theorem 1: 

Theorem 2: If x*(N) converges to x* in the rate O(g(N)), then  

and the function g(N) can be explicitly identified for different 
constraint domains.   
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Comparative Study
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Comparative Study
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Future Work

• Comparison with
• Commercial solvers such as CPLEX.
• Large-Scale SDP solvers based on ADMM.

• Finding explicit bounds for common domains.

• Finding accurate rates of comparison by considering the growth of 
the eigenvalues of the matrices. 
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Summary & Takeaways

• This method gives a highly scalable solution to the QCQP problem, 
with a theoretical guarantee of convergence.

 
• Rather than using random points it is better to use 

low-discrepancy points since random points can lead to arbitrarily 
bad results.

• Can be used in several applications which were blocked because of 
the scale of the problem. 
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Thank you for your attention!


