Online Parameter Selection for Web-based Ranking

DEEPAK AGARWAL, KINJAL BASU, SOUVIK GHOSH, YING XUAN, YANG YANG, LIANG ZHANG
LinkedIn Corporation

LinkedIn Feed

- **Mission:** Enable Members to build an active professional community that advances their career.

The Feed is the personalized home page of LinkedIn and contains a heterogeneous list of updates:

- Shares from a member’s connections.
- Recommendations including jobs, articles, connections, courses.
- Sponsored Content or Ads.

Ranking Problem

The ranking problem on the feed tries to balance three important metrics, Viral Actions (VA), Job Applies (JA), and Engaged Feed Session (EFS). For a member \(m \) the updates \(u \) in the feed is ranked according to

\[
S(m, u) = P_{VA}(m, u) + x_{EFS}P_{EFS}(m, u) + x_{JA}P_{JA}(m, u)
\]

(1)

The weight vector \(x = (x_{EFS}, x_{JA}) \) controls the balance of the metrics EFS, VA and JA. The business strategy is

\[
\max_x VA(x) \quad \text{s.t.} \quad EFS(x) \geq c_{EFS}, JA(x) \geq c_{JA}
\]

(2)

Reformulation for Bayesian Optimization

The optimal value of \(x \) (tuning parameters) changes over time. Example of changes can include new content types or updated relevance models. With every change engineers would manually find the optimal \(x \) by running multiple A/B tests and it is not the best use of engineering time.

- Let \(Y_{ij}^k(x) \in \{0, 1\} \) denote if the the \(i \)-th member during the \(j \)-th session which was served by parameter \(x \), did action \(k \) or not. Here \(k = VA, EFS \) or JA.
- \(Y_{ij}^k(x) \sim Bin(n_i(x), \sigma(f_k(x))) \)

Based on this modeling we reformulate the original problem as

\[
\max_x \sigma(f_{VA}(x)) + \lambda(\sigma_{EFS}(x) - c_{EFS}) + \sigma_{JA}(x) - c_{JA})
\]

(3)

Proposed Solution: We solve the problem through an \(\epsilon \)-greedy Thompson Sampling Algorithm. Each function \(f_k \) is modelled as a Gaussian Process. We start with a random distribution on \(x \) and using the observed data, we estimate the posterior of each \(f_k \). We sample from the posterior and estimate the new distribution of the maximum \(x^* \). We continue this process till convergence.

System Architecture

Simulation

(a) Trimodal Shekel Function
(b) Decay of log relative square error

Online Results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Lift in control 1</th>
<th>Lift in control 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral Action</td>
<td>+3.3%</td>
<td>+1.2%</td>
</tr>
<tr>
<td>Engaged Feed Session</td>
<td>-0.8%</td>
<td>0 %</td>
</tr>
<tr>
<td>Job Applies</td>
<td>+12.8%</td>
<td>+6.4%</td>
</tr>
</tbody>
</table>