

Online Parameter Selection for Web-based Ranking

DEEPAK AGARWAL, KINJAL BASU, SOUVIK GHOSH, YING XUAN, YANG YANG, LIANG ZHANG LinkedIn Corporation

LINKEDIN FEED

• Mission: Enable Members to build an active professional community that advances their career.

The Feed is the personalized home page of LinkedIn and contains a heterogenous list of updates

- Shares from a member's connections.
- Recommendations including jobs, articles, connections, courses.
- Sponsored Content or Ads.

RANKING PROBLEM

The ranking problem on the feed tries to balance three important metrics, $Viral\ Actions\ (VA)$, $Job\ Applies\ (JA)$, and $Engaged\ Feed\ Session\ (EFS)$. For a member m the updates u in the feed is ranked according to

$$S(m, u) = P_{VA}(m, u) + x_{EFS} P_{EFS}(m, u) + x_{JA} P_{JA}(m, u)$$
(1)

The weight vector $\mathbf{x} = (x_{EFS}, x_{JA})$ controls the balance of the metrics EFS, VA and JA. The business strategy is $\max VA(x)$ s.t. $EFS(x) \ge c_{EFS}$, $JA(x) \ge c_{JA}$ (2)

REFORMULATION FOR BAYESIAN OPTIMIZATION

The optimal value of x (tuning parameters) changes over time. Example of changes can include new content types or updated relevance models. With every change engineers would manually find the optimal x by running multiple A/B tests and it is not the best use of engineering time.

- Let $Y_{i,j}^k(x) \in \{0,1\}$ denote if the the *i*-th member during the *j*-th session which was served by parameter x, did action k or not. Here k = VA, EFS or JA.
- $Y_i^k(x) \sim Bin(n_i(x), \sigma(f_k(x)))$

Based on this modeling we reformulate the original problem as

$$\max_{\sigma} \sigma(f_{VA}(x)) + \lambda \left(\sigma_{\xi}(\sigma(f_{EFS}(x)) - c_{EFS}) + \sigma_{\xi}(\sigma(f_{JA}(x)) - c_{JA})\right) \tag{3}$$

Proposed Solution: We solve the problem through an ϵ -greedy **Thompson Sampling Algorithm**. Each function f_k is modelled as a Gaussian Process. We start with a random distribution on x and using the observed data, we estimate the posterior of each f_k . We sample from the posterior and estimate the new distribution of the maximum x^* . We continue this process till convergence.

Metric	Lift in control 1	Lift in control 2
Viral Action	+3.3%	+1.2%
Engaged Feed Session	-0.8%	0 %
Job Applies	+12.8%	+6.4%