Online Parameter Selection for Web-based Ranking

Deepak Agarwal

Joint Work with Kinjal Basu, Souvik Ghosh, Ying Xuan, Yang Yang and Liang Zhang.

LinkedIn Feed

Mission: Enable Members to build an active professional community that advances their career.

The Feed is:

- The personalized "home page" of LinkedIn
- A heterogenous list of updates
 - Shares from a member's connections
 - Recommendations including jobs, articles, connections, courses
 - Sponsored content or ads.

Important Metrics

- Viral Action (VA) Sessions where members liked, shared or commented on an item
- Job Applies (JA) Sessions where members applied for a job
- Engaged Feed Session (EFS)- Sessions where a member engaged with anything on feed.

Ranking

$$S(m, u) := P_{VA}(m, u) + x_{EFS}P_{EFS}(m, u) + x_{IA}P_{IA}(m, u).$$

- The weight vector $\mathbf{x} = (x_{EFS}, x_{JA})$ controls the balance of the metrics EFS, VA and JA.
- Business Strategy:

Maximize
$$VA(\mathbf{x})$$

 $\mathbf{x} \in X$
subject to $EFS(\mathbf{x}) \geq c_{EFS}, JA(\mathbf{x}) \geq c_{JA}$

Problem

- The optimal value of x (tuning parameters) changes over time
- Example of changes
 - New content types are added
 - Relevance models are updated

- With every change engineers would manually find the optimal x
 - Run multiple A/B tests
- Not the best use of engineering time

Metrics Modeling

- $Y_{i,j}^k(\mathbf{x}) \in \{0,1\}$ denote if the the i-th member during the j-th session which was served by parameter x, did action k or not. Here k = VA, EFS or Job Clicks.
- We model this data as follows

$$Y_i^k(\mathbf{x}) \sim Binomial(n_i(\mathbf{x}), \sigma(f_k(\mathbf{x})))$$

where $n_i(x)$ is the total number of sessions of member i which was served by x and f_k is a latent function for the particular metric.

Assume a Gaussian process prior on the latent function f.

Reformulation

We estimate the metrics as

$$VA(\mathbf{x}) = \sigma(f_{VA}(\mathbf{x}))$$

$$EFS(\mathbf{x}) = \sigma(f_{EFS}(\mathbf{x}))$$

$$JA(\mathbf{x}) = \sigma(f_{JA}(\mathbf{x}))$$

Solve the unconstrained optimization problem:

Maximize
$$VA(\mathbf{x}) + \lambda(\sigma_{\xi}(EFS(\mathbf{x}) - c_{EFS}) + \sigma_{\xi}(JA(\mathbf{x}) - c_{JA}))$$

Benefit: Equivalent to finding the maximum of a continuous functional of a Gaussian process

Thompson Sampling Algorithm

- Consider a Gaussian Process Prior on each f_k, where k is VA, EFS or JA
- Observe the data $Y_i^k(x)$

- Obtain the posterior of each f_k which is another Gaussian Process
- Sample from the posterior distribution and generate samples for the overall objective function.
- We get the next distribution of hyperparameters by maximizing the sampled objectives (over a grid of QMC points).

Continue until the distribution of x converges.

Simulation Results

Online Serving

 The Thompson Sampling approach generates a sampling distribution at every iteration.

$$(x_1,\ldots,x_n)$$
 with probability (p_1,\ldots,p_n) such that $\sum p_i=1$

• To serve members with the same distribution, each memberld is mapped to [0,1] using a hashing function h. For example, if

$$\sum_{i=1}^{k} p_i < h(Deepak) \le \sum_{i=1}^{k+1} p_i$$

Then the feed is served with parameter x_{k+1}

Online Architecture

Other Practical Design Considerations

- Consistency in user experience.
 - Randomize at member level instead of session level.
- Offline flow frequency
 - Batch computation where we collect data for an hour and run the offline flow each hour to update the sampling distribution.
- Assume $(f_{VA}, f_{EFS}, f_{JA})$ to be Independent
 - Works well in our setup. Joint modeling might reduce variance.
- Choice of business constraint thresholds.
 - Chosen to allow for a 1% drop.

Online Convergence Result

Online A/B Test Results

Table 1: Online A/B results for Online Parameter Selection in LinkedIn Feed Ranking

Metric	Lift (%) vs	Lift (%) vs
	Control x_{c_1}	Control x_{c_2}
Viral Actions	+3.3%	+1.2%
Engaged Feed Sessions	-0.8%	0%
Job Applies	+12.8%	+6.4%

Key Takeaways

- Removes the human in the loop: Fully automatic process to find the optimal parameters.
- Drastically improves developer productivity.
- Can scale to multiple competing metrics.
- Future Direction
 - Create a dependent structure on different utilities to better model the variance.
 - Automatically identify the primary metric by understanding the models better.
 - Allow for relaxing the constraint to get large gain in primary metric.

Linked in