Low-discrepancy quadrature in the triangle

Kinjal Basu Prof. Art Owen

Department of Statistics Stanford University

7th April 2014

Overview

- Introduction
 - Quasi-Monte Carlo
 - Motivation
- 2 Background
 - Discrepancy
- Construction
 - Triangular van der Corput points
 - Discrepancy of triangular van der Corput points
 - Triangular Kronecker Lattice
- Consistency Result
- 6 Conclusion

Introduction

- Problem : Numerical Integration over triangular domain using quasi-Monte Carlo (QMC) sampling.
- QMC in $[0,1]^d$.

$$\mu = \int_{[0,1]^d} f(x) dx$$
 $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(x_i)$

Koksma-Hlawka inequality

$$|\hat{\mu}_n - \mu| \leqslant D_n^*(x_1, \dots, x_n) \times V_{HK}(f)$$

 Recent work relating to general spaces by Aistleitner et al., (2012), Brandolini et. al (2013)

Motivation

- Need in computer graphics, genetic experimental studies, etc.
- Mapping by special functions/transformation from $[0,1]^d$ Pillards and Cools (2005).
- Several notions of discrepancy on the triangle/simplex but no explicit constructions. Pillards and Cools (2005), Brandolini et. al (2013).
- Two constructions van der Corput sequence and hybrid of lattice and Kronecker construction.

General Notions of Discrepancy

• The signed discrepancy of $\mathcal P$ at the measurable set $S \subset \Omega \subset \mathbb R^d$ is

$$\delta_N(S; \mathcal{P}, \Omega) = \text{vol}(S \cap \Omega)/\text{vol}(\Omega) - A_N(S; \mathcal{P})/N.$$

• The absolute discrepancy of points $\mathcal P$ for a class $\mathcal S$ of measurable subsets of Ω is

$$D_N(S; \mathcal{P}, \Omega) = \sup_{S \in S} D_N(S; \mathcal{P}, \Omega),$$

where

$$D_N(S; \mathcal{P}, \Omega) = |\delta_N(S; \mathcal{P}, \Omega)|.$$

• Standard QMC works with $\Omega = [0,1)^d$ and takes for \mathcal{S} the set of anchored boxes $[0,\mathbf{a})$ with $\mathbf{a} \in [0,1)^d$.

Discrepancy due to Brandolini et al. (2013)

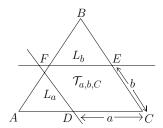
- $S_C = \{ T_{a,b,C} \mid 0 < a < \|A C\|, 0 < b < \|B C\| \}$
- The parallelogram discrepancy of points \mathcal{P} for $\Omega = \Delta(A, B, C)$ is

$$D_N^P(\mathcal{P};\Omega) = D_N(\mathcal{S}_P;\mathcal{P},\Omega)$$

for

$$S_P = S_A \cup S_B \cup S_C$$
.

Figure : The construction of the parallelogram $\mathcal{T}_{a,b,C} = CDFE$



Discrepancy due to Pillards and Cools (2005)

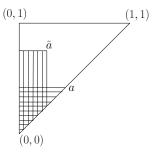
- $\Omega = \Delta((0,0)^T, (0,1)^T, (1,1)^T)$
- Their discrepancy

$$D_N^{PC}(\mathcal{P};\Omega) = D_N(\mathcal{S}_I,\mathcal{P},\Omega)$$

where

$$S_I = \{[0, \mathbf{a}) \mid \mathbf{a} \in [0, 1)^2\}.$$

Figure : Star Discrepancy on the Simplex



Relationship between the discrepancies

Lemma 1

Let T_{PC} be the triangle from Pillards and Cools and for $N \ge 1$, let \mathcal{P} be the list of points $\mathbf{x}_1, \dots, \mathbf{x}_N \in T_{PC}$. Then

$$D_N^{PC}(\mathcal{P}, T_{PC}) \leq 2D_N^P(\mathcal{P}, T_{PC})$$

Proof

- $[0, a_1) \times [0, a_2) = [0, a_1) \times [0, 1) [0, a_1) \times [a_2, 1)$
- Taking C to be the vertex $(0,1)^T$ of T_{PC} ,
- $D_N^{PC}(\mathcal{P}; T_{PC}) \leq 2D_N(\mathcal{S}_C, \mathcal{P}, T_{PC}) \leq 2D_N^P(\mathcal{P}, T_{PC})$.

Triangular van der Corput construction

- van der Corput sampling of [0,1] the integer $n = \sum_{k \ge 1} d_k b^{k-1}$ in base $b \ge 2$ is mapped to $x_n = \sum_{k \ge 1} d_k b^{-k}$.
- Points $x_1, \ldots, x_n \in [0, 1)$ have a discrepancy of $O(\log(n)/n)$.
- Our situation : 4-ary expansion.

Triangular van der Corput construction

• $n \ge 0$ in a base 4 representation $n = \sum_{k \ge 1} d_k 4^{k-1}$ where $d_k \in \{0, 1, 2, 3\}$

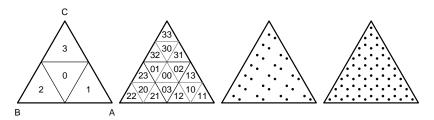


Figure : A labeled subdivision of $\Delta(A, B, C)$ into 4 and then 16 congruent subtriangles. Next are the first 32 triangular van der Corput points followed by the first 64. The integer labels come from the base 4 expansion.

Triangular van der Corput construction

• Computation : $T = \Delta(A, B, C)$

$$T(d) = \begin{cases} \Delta(\frac{B+C}{2}, \frac{A+C}{2}, \frac{A+B}{2}), & d = 0\\ \Delta(A, \frac{A+B}{2}, \frac{A+C}{2}), & d = 1\\ \Delta(\frac{B+A}{2}, B, \frac{B+C}{2}), & d = 2\\ \Delta(\frac{C+A}{2}, \frac{C+B}{2}, C), & d = 3. \end{cases}$$

- This construction defines an infinite sequence of $f_T(i) \in T$ for integers $i \ge 0$.
- For an *n* point rule, take $\mathbf{x}_i = f_T(i-1)$ for $i = 1, \dots, n$.

Discrepancy Results

Theorem 1

For an integer $k \geqslant 0$ and non-degenerate triangle $\Omega = \Delta(A, B, C)$, let \mathcal{P} consist of $\mathbf{x}_i = f_{\Omega}(i-1)$ for $i = 1, \dots, N = 4^k$. Then

$$D_N^P(\mathcal{P};\Omega) = egin{cases} rac{7}{9}, & N=1 \ rac{2}{3\sqrt{N}} - rac{1}{9N}, & ext{else.} \end{cases}$$

Discrepancy Results

Theorem 2

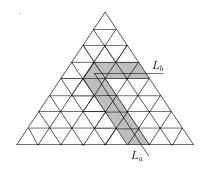
Let Ω be a nondegenerate triangle, and let $\mathcal P$ contain points $\mathbf x_i=f_\Omega(s+i-1),\ i=1,\ldots,N=4^k$, for a starting integer $s\geqslant 1$ and an integer $k\geqslant 0$. Then

$$D_N^P(\mathcal{P};\Omega) \leq \frac{2}{\sqrt{N}} - \frac{1}{N}.$$

Proof of Theorem 2

Proof

- A set $S \in \mathcal{S}_C$ can be written $S = \mathcal{T}_{a,b,C} \cap \Omega$.
- Let T_j be the interiors of the subtriangles of Ω for $j=1,\ldots,N$ and then let $T_0=\Omega\setminus \bigcup_{j=1}^N T_j$.
- $S_j = S \cap T_j$, j = 0, 1, ..., N.



Proof of Theorem 2

- $\delta_N(S) = \sum_{j=0}^N \delta_N(S_j)$.
- $\delta_N(S_0) = 0$.
- If the boundary of $\mathcal{T}_{a,b,C}$ does not touch S_j for $1 \leq j \leq N$ then $\delta_N(S_j) = 0$ too. Otherwise $-1/N \leq \delta_N(S_j) \leq 1/N$.
- $D_N(S; \mathcal{P}) \leq m/N$ where m is the number of subtriangles touching a boundary line of $\mathcal{T}_{a,b,C}$.
- $m \le 2\sqrt{N} 1$
- $D_N(\mathcal{S}_C; \mathcal{P}) \leqslant (2\sqrt{N} 1)/N$

Discrepancy Results

Theorem 3

Let Ω be a non-degenerate triangle and, for integer $N \geqslant 1$, let $\mathcal{P} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, where $\mathbf{x}_i = f_{\Omega}(i-1)$. Then

$$D_N^P(\mathcal{P};\Omega) \leqslant 12/\sqrt{N}$$
.

Proof:

- Let $N = \sum_{i=0}^{k} a_i 4^{j}$ for some k, with $a_k \neq 0$.
- Let \mathcal{P}_j^I denote a set of 4^j consecutive points from \mathcal{P} , for $I=1,\ldots,a_j$ and $j\leqslant k$. These \mathcal{P}_j^I can be chosen to partition the N points \mathbf{x}_i . Fix any $S\in\mathcal{S}_P$.

Proof of Theorem 3

Now.

$$\delta_N(S; \mathcal{P}) = \frac{1}{N} \sum_{j=0}^k \sum_{l=1}^{a_j} 4^j \delta(S; \mathcal{P}_j^l).$$

• Therefore from Theorem 2,

$$D_{N}(S; \mathcal{P}) = |\delta_{N}(S; \mathcal{P})| \leqslant \frac{1}{N} \sum_{j=0}^{k} \sum_{l=1}^{a_{j}} 4^{j} \left(\frac{2}{2^{j}} - \frac{1}{4^{j}}\right) \leqslant \frac{1}{N} \sum_{j=0}^{k} a_{j} (2^{j+1} - 1)$$
$$\leqslant \frac{3}{N} \left(2(2^{k+1} - 1) - (k+1)\right) \leqslant \frac{12 \times 2^{k}}{N}$$

and then $k \leq \log_4(N)$, gives $D_N(S; \mathcal{P}) \leq 12/\sqrt{N}$.

• Taking the supremum over $S \in \mathcal{S}_P$ yields the result.

- We use Theorem 1 of Chen and Travalini (2007)
- This construction yields parallel discrepancy of $O(\log N/N)$

Definition 1

A real number θ is said to be *badly approximable* if there exists a constant c>0 such that $n||n\theta||>c$ for every natural number $n\in\mathbb{N}$ and $||\cdot||$ denotes the distance from the nearest integer.

Definition 2

Let a, b, c and d be integers with $b \neq 0$, $d \neq 0$ and c > 0, where c is not a perfect square. Then $\theta = (a + b\sqrt{c})/d$ is a quadratic irrational number.

- Let $\Theta = \{\theta_1, \dots, \theta_k\}$ be a set of $k \geqslant 1$ angles in $[0, 2\pi)$.
- Then let $\mathcal{A}(\Theta)$ be the set of convex polygonal subsets of $[0,1]^2$ whose sides make an angle of θ_i with respect to the horizontal axis.

Theorem 1 (Chen and Travaglini (2007))

There exists a constant $C_{\Theta} < \infty$ such that for any integer N > 1 there exists a list $\mathcal{P} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ of points in $[0,1]^2$ with

$$D_N(\mathcal{A}(\Theta); \mathcal{P}, [0,1]^2) < C_{\Theta} \log(N)/N.$$

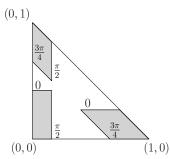
Lemma 2 (Davenport)

Suppose that the angles $\theta_1, \ldots, \theta_k \in [0, 2\pi)$ are fixed. Then there exists $\alpha \in [0, 2\pi)$ such that $\tan(\alpha), \tan(\alpha - \pi/2), \tan(\alpha - \theta_1), \ldots$ $\tan(\alpha - \theta_k)$ are all finite and badly approximable.

•
$$R = \Delta((0,0)^T, (0,1)^T, (1,0)^T).$$

•
$$\Theta = \{0, \pi/2, 3\pi/4\}$$

Figure : Set of Angles for Kronecker Construction



Lemma 3

Let α be an angle for which $\tan(\alpha)$ is a quadratic irrational number. Then $\tan(\alpha)$, $\tan(\alpha-\pi/2)$ and $\tan(\alpha-3\pi/4)$ are all finite and badly approximable.

- $tan(3\pi/8) = 1 + \sqrt{2}$.
- $\tan(5\pi/8) = -1 \sqrt{2}$.

Theorem 4

Let N>1 be an integer and let R defined above be the triangle. Let $\alpha\in(0,2\pi)$ be an angle for which $\tan(\alpha)$ is a quadratic irrational. Let \mathcal{P}_1 be the points of the lattice $(2N)^{-1/2}\mathbb{Z}^2$ rotated anticlockwise by angle α . Let \mathcal{P}_2 be the points of \mathcal{P}_1 that lie in R. If \mathcal{P}_2 has more than N points, let \mathcal{P}_3 be any N points from \mathcal{P}_2 , or if \mathcal{P}_2 has fewer than N points, let \mathcal{P}_3 be a list of N points in R including all those of \mathcal{P}_2 . Then there is a constant C with

$$D^P(\mathcal{P}_3; R) < C \log(N)/N.$$

Triangular Lattice Points

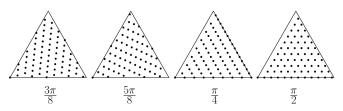
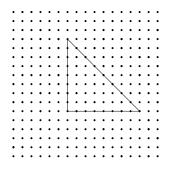


Figure : Triangular lattice points for target N=64. Domain is an equilateral triangle. Angles $3\pi/8$ and $5\pi/8$ have badly approximable tangents. Angles $\pi/4$ and $\pi/2$ have integer and infinite tangents respectively and do not satisfy the conditions for discrepancy $O(\log(N)/N)$.

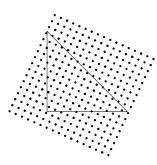
Given a target sample size N, an angle α such as $3\pi/8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

ullet Take integer grid \mathbb{Z}^2



- Take integer grid \mathbb{Z}^2
- ullet Rotate anti clockwise by lpha

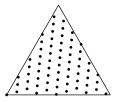
- Take integer grid \mathbb{Z}^2
- ullet Rotate anti clockwise by lpha
- Shrink by $\sqrt{2N}$



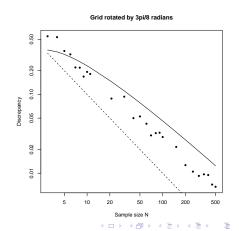
- Take integer grid \mathbb{Z}^2
- ullet Rotate anti clockwise by lpha
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.

- Take integer grid \mathbb{Z}^2
- ullet Rotate anti clockwise by lpha
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly N points

- Take integer grid \mathbb{Z}^2
- ullet Rotate anti clockwise by lpha
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly N points
- Linearly map R onto the desired triangle $\Delta(A, B, C)$



Parallel discrepancy of triangular lattice points for angle $\alpha = 3\pi/8$ and various targets N. The number of points was always N or N+1. The dashed reference line is 1/N. The solid line is $\log(N)/N$.

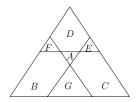


Preliminaries

Lemma 4

Let T be a triangle and \mathcal{P} a list of $N \geqslant 1$ points in T, having parallel discrepancy $D_N^P(\mathcal{P};T)$. Let S be a subtriangle of T with sides parallel to those of T. Then $D_N(S;\mathcal{P}) \leqslant 6D_N^P(\mathcal{P};T)$.

Proof of Lemma 4



• For inverted subtriangle A

$$\delta(AB) + \delta(AC) + \delta(AD) - \delta(ABDF) - \delta(ACDE) - \delta(ACGB)$$

$$= -\delta(B) - \delta(C) - \delta(D) - \delta(E) - \delta(F) - \delta(G)$$

$$= \delta(A),$$

Proof of Lemma 4



For upright subtriangle A

$$\delta(ABFG) + \delta(ADEF) + \delta(ACEG) + \delta(B) + \delta(C) + \delta(D)$$

$$= 3\delta(A) + 2\delta(B) + 2\delta(C) + 2\delta(D) + 2\delta(E) + 2\delta(F) + 2\delta(G)$$

$$= \delta(A).$$

Consistency Theorem

Theorem 5

Let f be a Riemann integrable function on a nondegenerate triangle Ω , and let $\mathcal{P}_N = (\mathbf{x}_{N,1}, \mathbf{x}_{N,2}, \dots, \mathbf{x}_{N,N})$ for $\mathbf{x}_{N,i} \in \Omega$. If $\lim_{N \to \infty} D_N^P(\mathcal{P}; \Omega) = 0$, then

$$\lim_{N\to\infty}\frac{\operatorname{vol}(\Omega)}{N}\sum_{i=1}^N f(\mathbf{x}_{N,i})=\int_{\Omega}f(\mathbf{x})\,\mathrm{d}\mathbf{x}.$$

Conclusion

- The Kronecker construction attains a lower discrepancy than the van der Corput construction.
- van der Corput construction is extensible and the digits in it can be randomized.
- If f is continuously differentiable, then for $N=4^k$, the randomization in Owen (1995) will give root mean square error O(1/N)

Future Work

- Generalization to tetrahedrons, spherical triangles
- Working with higher order integrals.

Conclusion

Thank you. Questions?