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PROBLEM
We consider the following quadratically con-

strained quadratic programming (QCQP) prob-
lem,

Minimize
x

(x− a)TA(x− a)

subject to (x− b)TB(x− b) ≤ b̃, (1)
Cx = c.

where A,B are n× n positive-definite matrices.
The usual techniques include SDP and RLT

relaxations but both convert the problem from
O(n) to O(n2) variables. This makes solving
such problems extremely expensive in large-
scale applications.

QCQP TO QP APPROXIMATION
To get a scalable solution, we approximate

the quadratic constraint by a set of linear con-
straints thus, obtaining a quadratic program
(QP) with n variables.

We choose a set of N points such that each
point xj belongs to the boundary. The trans-
formed problem P(XN ) can be written as

Minimize
x

(x− a)TA(x− a)

subject to (x− b)TB(xj − b) ≤ b̃ (2)
for j = 1, . . . , N

Cx = c.

For example, the tangent planes through the
6 points x1, . . . ,x6 create the approximation to
the quadratic constraint S in two dimensions.
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LOW-DISCREPANCY SAMPLING
The accuracy of the solution to P(XN ) is dependent on the choice of the points XN . Choosing

random points can lead to arbitrary bad solutions. To get an accurate solution we resort to optimally
mapping a low-discrepancy sequence to the ellipsoidal constraint, which has good equidistribution
property. We use a (t,m, s)-net as a starting point on the unit hypercube which is then mapped to the
surface of the ellipsoid via a measure preserving map.

The left panel shows a (0, 7, 2)-net in base 2 which is mapped to a sphere in 3 dimensions (middle
panel) and then mapped to the ellipsoid as seen in the right panel.

EXPERIMENTAL RESULTS
We consider random objective functions with the true global minimum outside of the constraint

domain. SDP and Exact ( Interior point methods) give us the true optimal. For large n the algorithms
do not converge in time (1 hour). Our sampling scheme give much closer objective value to the truth
than other sampling techniques.

Table 1: Optimal objective value and convergence time

n Our method Sampling Sampling SDP RLT Exacton [0, 1]n on Sn

5 3.00 2.99 2.95 3.07 3.08 3.07
(4.61s) (4.74s) (6. 11s) (0.52s) (0.51s) (0.49)

50 99668 15122 26239 1.11× 105 1.08× 105 1.11× 105

(15.55s) (18.98s) (17.32s) (4.31s) (2.96s) (0.64)

100 1.40× 106 69746 1.24× 106 1.62× 106 1.52× 106 1.62× 106

(58.41s) (1.03m) (54.69s) (30.41s) (15.36s) (2.30s)

105
3.10× 108 7.12× 107 8.39× 107 NA NA NA(25.82m) (24.59m) (27.23m)

106
3.91× 109 2.69× 108 7.53× 108 NA NA NA(38.30m) (39.15m) (37.21m)

CONVERGENCE RESULTS
Theorem 1 limN→∞ ‖x∗(N)− x∗‖ = 0

Theorem 2 If ‖x∗(N) − x∗‖ = O(g(N)), then
|f(x∗(N))− f(x∗)| ≤ Cg(N) where C > 0 is a
constant.

For example, if S was the unit circle, then we
have,

g(N) := max
i=1,...,N

sup
t,x:A(t,x)∈Ci

‖t− x‖

= tan
( π
N

)
= O

(
1

N

)
. (3)

Combining this observation with Theorem 2
shows that in order to get an objective value
within ε of the true optimal, we would need N
to be a constant multiplier of ε−1.
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Six equivalent conic regions for a unit circle.

FUTURE WORK
• Comparison with commercial solvers such

as CPLEX and large-scale SDP solvers
based on ADMM such as Splitting Conic
Solver (SCS)

• Finding explicit bounds for common do-
mains.

• Finding accurate rates by considering the
growth of the eigenvalues of the matrices.


