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Network Effect in A/B Testing
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• A violation of Stable Unit Treatment Value Assumption (SUTVA), where         
Response depends on Own treatment + Neighbors’ treatment (network effect)

• Average treatment effect (ATE):
Average response when the whole population is receiving treatment B - Average response when the 
whole population is receiving treatment A

• Incorrect ATE estimation in classical A/B testing, since all neighbors of a treated node are not receiving 
the same treatment as the treated node 



OASIS: Optimal Allocation Strategy and Importance Sampling

• Most literature on network A/B testing: 
• Graph clustering + cluster-level randomization for treatment assignment
• Not suitable for dense graphs

• We present a complementary approach that does not require graph clustering by relies on certain 
assumption on treatment propagation.

• A two-step approach (OASIS)
1. An approximate experimental design to provide a “correct” counterfactual experience to 

each experiment unit (by solving a constrained optimization problem)
2. Post-experiment adjustment (via importance sampling) to correct for any leftover bias in 

estimating the average treatment effect

Preprint available on arXiv: 
P. Nandy, K. Basu, S. Chatterjee, Y. Tu (2020). A/B Testing in Dense Large-Scale Networks: Design and 
Inference. arXiv:1901.10505.



Agenda
• Motivating Example

• Main Assumption

• OASIS

• Empirical Evaluation



A/B Testing Content 
Recommendation on 
LinkedIn News Feed
• Every member in the network is a content 

consumer and a content producer

• Treatment = Content recommendation model

• Response = Member engagement 

• Response of a member depends on 
consumer-side experience (content quality) + 
producer-side experience (# likes, #comments, …)

• Producer-side experience (network effect) 
depends on neighbors’ recommendation model 
(treatment)



The Main Assumption

Treatment

Producer-side 
experience (# likes, 
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Network Effect Assumption



Step 1: Randomly Assign        and  
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Step 2: Randomly Choose Nodes to Assign  
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Step 3: Solve a Constrained Optimization Problem
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with respect to certain constraints controlling the risk of the experiment
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Step 4: Run Experiment and Collect Data

Response:

{𝑌(       ) }A {𝑌(       ) }Band
Observed Total Exposure:
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Expected Total Exposure:
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Step 5: Importance Sampling Correction

Average Treatment Effect:
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OASIS: Optimal Allocation Strategy and Importance Sampling

1. Randomly assign       and

2. Randomly choose additional nodes

3. Solve a constrained optimization to assign        to

4. Run experiment and collect data

5. Importance sampling correction
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OASIS: Optimal Allocation Strategy and Importance Sampling
• Implemented for LinkedIn Feed experiments and using it for experiments 

targeted toward creator experience enhancement

• =         ∗ boost factors (normalized to have each column sum equals 1)

• Solve a large-scale optimization to get boost factors, where we control risk 
by setting a lower and an upper bound for boost factors

• Update boost factors regularly to handle dynamic network/treatment

• Correct bias with importance sampling

• See simulation and real-world experiment results in the paper
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OASIS: Optimal Allocation Strategy and Importance Sampling

Treatment

Total Exposure X
Network Effect

Response

Individual Effect Network Effect Total Effect
Classical A/B 

Testing
✔ ⤫ ⤫

OAS + Average 
Difference

✔ ≈ ≈

OASIS ✔ ✔ ✔

Individual Effect



OASIS: Optimal Allocation Strategy and Importance Sampling

Pros:
• Theoretically sound under certain assumptions
• Works well for dense networks
• Can handle multiple treatments simultaneously
• Can handle dynamic networks and dynamic treatments
• Can control the risk of the experiment explicitly by adding constraints in 

the optimization

Cons:
• Relies on a number of assumptions
• Works only for a certain type of experiments

• P. Nandy, K. Basu, S. Chatterjee, Y. Tu. A/B Testing in Dense Large-Scale Networks: Design and Inference. arXiv preprint arXiv:1901.10505, 2019.
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