Online Parameter Selection for Web-based Ranking via Bayesian Optimization

Oct 21, 2019

Kinjal Basu
Staff Software Engineer, Flagship AI

Joint work with:
Deepak Agarwal, Souvik Ghosh, Ying Xuan, Yang Yang and Liang Zhang
Agenda

1. Problem Setup
 LinkedIn Feed

2. Reformulation as a Black-Box Optimization

3. Explore-Exploit Algorithm
 Thompson Sampling

4. Theoretical Results
 Infrastructure

5. Results
LinkedIn Feed

Mission: Enable Members to build an active professional community that advances their career.
LinkedIn Feed

Mission: Enable Members to build an active professional community that advances their career.

Heterogenous List:
- Shares from a member’s connections
- Recommendations such as jobs, articles, courses, etc.
- Sponsored content or ads
Important Metrics

Viral Actions (VA)
Members liked, shared or commented on an item

Job Applies (JA)
Members applied for a job

Engaged Feed Sessions (EFS)
Sessions where a member engaged with anything on feed.
Ranking Function

- m – Member, u - Item

$$S(m, u) := P_{VA}(m, u) + x_{EFS} P_{EFS}(m, u) + x_{JA} P_{JA}(m, u)$$

- The weight vector $x = (x_{EFS}, x_{JA})$ controls the balance between the three business metrics: EFS, VA and JA.

- A Sample Business Strategy is

$$\text{Maximize. } \quad VA(x)$$
$$\text{s.t. } \quad EFS(x) > c_{EFS}$$
$$\quad JA(x) > c_{JA}$$
Major Challenges

- The optimal value of x (tuning parameters) changes over time
- Example of changes
 - New content types are added
 - Score distribution changes (Feature drift, updated models, etc.)
- With every change engineers would manually find the optimal x
 - Run multiple A/B tests
 - Not the best use of engineering time
Reformulation into a Black-Box Optimization Problem
Modeling The Metrics

- \(Y_{i,j}^k(x) \in \{0,1\} \) denotes if the \(i \)-th member during the \(j \)-th session which was served by parameter \(x \), did action \(k \) or not. Here \(k = VA, EFS \) or \(JA \).

- We model this data as follows

\[
Y_{i,j}^k(x) \sim \text{Binomial} \left(n_i(x), \sigma(f_k(x)) \right)
\]

where \(n_i(x) \) is the total number of sessions of member \(i \) which was served by \(x \) and \(f_k \) is a latent function for the particular metric.

- Assume a Gaussian process prior on each of the latent function \(f_k \).
Reformulation

We approximate each of the metrics as:

\[VA(x) = \sigma(f_{VA}(x)) \]
\[EFS(x) = \sigma(f_{EFS}(x)) \]
\[JA(x) = \sigma(f_{JA}(x)) \]

The original optimization problem can be written through this parametrization.

Maximize \(VA(x) \)
\text{s.t.} \quad EFS(x) > c_{EFS} \quad \text{and} \quad JA(x) > c_{JA}

Maximize \(\sigma(f_{VA}(x)) \)
\text{s.t.} \quad \sigma(f_{EFS}(x)) > c_{EFS} \quad \text{and} \quad \sigma(f_{JA}(x)) > c_{JA}

Maximize \(f(x) \)
\text{s.t.} \quad x \in X

Benefit: The last problem can now be solved using techniques from the literature of Bayesian Optimization.
Explore-Exploit Algorithms
Bayesian Optimization
A Quick Crash Course

- Explore-Exploit scheme to solve

\[
\text{Maximize } \quad f(x) \\
\quad x \in X
\]
Bayesian Optimization

A Quick Crash Course

- Explore-Exploit scheme to solve

 \[
 \text{Maximize } f(x) \\
 x \in X
 \]

- Assume a Gaussian Process prior on \(f(x) \).

- Start with uniform sample
 get \((x, f(x))\)

- Estimate the mean function and covariance kernel
Bayesian Optimization
A Quick Crash Course

- Explore-Exploit scheme to solve
 \[\text{Maximize } f(x) \]
 \[x \in X \]
- Assume a Gaussian Process prior on \(f(x) \).
- Start with uniform sample
 get \((x, f(x))\)
- Estimate the mean function and covariance kernel
- Draw the next sample \(x \) which maximizes an "acquisition function" or predictive posterior.
- Continue the process.
Bayesian Optimization
A Quick Crash Course

- Explore-Exploit scheme to solve
 \[
 \text{Maximize } f(x) \\
 x \in X
 \]
- Assume a Gaussian Process prior on \(f(x) \).
- Start with uniform sample get \((x, f(x))\)
- Estimate the mean function and covariance kernel
- Draw the next sample \(x \) which maximizes an “acquisition function” or predictive posterior.
- Continue the process.
Bayesian Optimization
A Quick Crash Course

- Explore-Exploit scheme to solve
 \[
 \text{Maximize } f(x) \\
 x \in X
 \]
- Assume a Gaussian Process prior on \(f(x) \).

- Start with uniform sample get \((x, f(x))\)
- Estimate the mean function and covariance kernel
- Draw the next sample \(x \) which maximizes an "acquisition function" or predictive posterior.
- Continue the process.
Bayesian Optimization

A Quick Crash Course

- Explore-Exploit scheme to solve
 \[
 \text{Maximize } f(x) \\
 x \in X
 \]
- Assume a Gaussian Process prior on \(f(x) \).

- Start with uniform sample get \((x, f(x))\)
- Estimate the mean function and covariance kernel
- Draw the next sample \(x \) which maximizes an “acquisition function” or predictive posterior.
- Continue the process.
Algorithm 1 \(\xi \)-Greedy Thompson Sampling for Infinite-Armed Bandits

1: Input : Function \(f \), Kernel form \(k_{\eta} \), Domain \(\mathcal{X} \), Parameter \(\xi \)
2: Output : \(x^* \), the global maximum of \(f \)
3: Sample \(x_i^0 \) uniformly from \(\mathcal{X} \) for \(i = 1, \ldots, n \)
4: Observe \(y_i^0 = f(x_i^0) + \epsilon \), where \(\epsilon \sim N(0, \sigma^2) \).
5: Put \(D_1 = \{(x_i^0, y_i^0)\}_{i=1}^n \)
6: for \(t = 1, 2, \ldots \) do
7: Estimate the hyper-parameters \(\eta_t, \sigma_t \) using \(D_t \)
8: Sample a random functions \(f_1, \ldots, f_N \) from the posterior \(f|D_t \).
9: Set \(x_i^* = \text{argmax}_{x \in \mathcal{X}} f_i(x) \) for \(i = 1, \ldots, N \).
10: Choose \(\{(x_i^t)_{i=1}^n \sim \begin{cases} \mathbb{P}_N(\{x_i^*\}_{i=1}^N) & \text{with probability } 1 - \xi \\ U(\mathcal{X}) & \text{with probability } \xi \end{cases} \)
11: Observe \(y_i^t = f(x_i^t) + \epsilon \), where \(\epsilon \sim N(0, \sigma^2) \).
12: Set \(D_{t+1} = D_t \cup \{(x_i^t, y_i^t)\} \)
13: Break from the loop when \(x^t \) chosen as the maximizer converges to \(x^* \).
14: end for
15: return \(x^* \)
Theoretical Results

- All previous results focused on regret (some form)
Theoretical Results

- All previous results focused on regret (some form)

Theorem 1 Let f be a smooth continuous function on a compact set $\mathcal{X} \subset \mathbb{R}^d$ having a global unique maximum at x^*. Then, under some assumptions, if we follow the Thompson Sampling Algorithm, there exists a T such that for all $t > T$,

$$P(\|x^t - x^*\| > \epsilon) \leq C_\epsilon \exp(-c_\epsilon t),$$

where C_ϵ, c_ϵ are positive constants that depend on the curvature of the function f.
Theoretical Results

- All previous results focused on regret (some form)

Theorem 1 Let f be a smooth continuous function on a compact set $\mathcal{X} \subset \mathbb{R}^d$ having a global unique maximum at x^*. Then, under some assumptions, if we follow the Thompson Sampling Algorithm, there exists a T such that for all $t > T$,

$$P(||x^t - x^*|| > \epsilon) \leq C_\epsilon \exp(-c_\epsilon t),$$

where C_ϵ, c_ϵ are positive constants that depend on the curvature of the function f.

Proof Idea

- Breaking down continuous domain into smaller regions
- Bounding the error in each region
- Combine with the union bound
Infrastructure
Overall System Architecture
Results
Simulation Results

(a) Trimodal Shekel Function

(b) Decay of log relative square error
Table 1: Online A/B results for Online Parameter Selection in LinkedIn Feed Ranking

<table>
<thead>
<tr>
<th>Metric</th>
<th>Lift (%) vs Control x_{c_1}</th>
<th>Lift (%) vs Control x_{c_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral Actions</td>
<td>+3.3%</td>
<td>+1.2%</td>
</tr>
<tr>
<td>Engaged Feed Sessions</td>
<td>-0.8%</td>
<td>0%</td>
</tr>
<tr>
<td>Job Applies</td>
<td>+12.8%</td>
<td>+6.4%</td>
</tr>
</tbody>
</table>
Online Convergence Plots
Key Takeaways

- Removes the human in the loop: Fully automatic process to find the optimal parameters.
- Drastically improves developer productivity.
- Can scale to multiple competing metrics.
- Very easy onboarding infra for multiple vertical teams. Currently used by Ads, Feed, Notifications, People You May Know, etc.

Future Direction
- Add on other Explore-Exploit algorithms.
- Move from Black-Box to Grey-Box optimizations
- Create a dependent structure on different utilities to better model the variance.
References

Thank you
Thompson Sampling

- Consider a Gaussian Process Prior on each f_k, where k is VA, EFS or JA
- Observe the data $(x, f_k(x))$
- Obtain the posterior of each f_k which is another Gaussian Process
- Sample from the posterior distribution and generate samples for the overall objective function.
- We get the next distribution of hyperparameters by maximizing the sampled objectives (over a grid of QMC points).
- Continue this process till convergence.

Maximize $\sigma(f_{VA}(x))$

s.t. $\sigma(f_{EFS}(x)) > c_{EFS}$

$\sigma(f_{JA}(x)) > c_{JA}$
The Parameter Store and Online Serving

- The Bayesian Optimization library generates
 - A set of potential candidates for trying in the next round \((x_1, x_2, \ldots, x_n)\)
 - A probability of how likely each point is the true maximizer \((p_1, p_2, \ldots, p_n)\) such that \(\sum_{i=1}^{n} p_i = 1\)

- To serve members with the above distribution, each `memberId` is mapped to \([0,1]\) using a hashing function \(h\). For example, if

\[
\sum_{i=1}^{k} p_i < h(Kinjal) \leq \sum_{i=1}^{k+1} p_i
\]

Then my feed is served with parameter \(x_{k+1}\)

- The parameter store (depending on use-case) can contain
 - \(<\text{parameterValue}, \text{probability}>\) i.e. \((x_i, p_i)\) or
 - \(<\text{memberId}, \text{parameterValue}>\)
Practical Design Considerations

- Consistency in user experience.
 - Randomize at member level instead of session level.

- Offline Flow Frequency
 - Batch computation where we collect data for an hour and run the offline flow each hour to update the sampling distribution.

- Assume \((f_{VA}, f_{EFS}, f_{JA})\) to be Independent
 - Works well in our setup. Joint modeling might reduce variance.

- Choice of Business Constraint Thresholds.
 - Chosen to allow for a small drop.
Appendix – Library API

- Problem Specifications

```json
{
  "treatmentModels": ["treatmentModel-1"],
  "controlModel": "controlModel-1",
  "exploreNumIterations": "6",
  "params": {
    "fieldName": "threshold",
    "parameterInfo": {
      "searchRange": {
        "low": "0.17",
        "high": "0.24"
      },
      "dataType": "float"
    }
  }
}
```
Appendix – Library API

• Objective and Constraints

```
"Objective":{
    "objectiveType":"max",
    "objectiveParts":[
        {
            "utilityName":"ClickRate",
            "ColumnNames":[
                "clickCount",
                "impressedCount"
            ],
            "distribution":"gaussian"
        }
    ]
}
```

```
"Constraints":{
    "utilityName":"SendsByGenerated",
    "ColumnNames":{
        "sentCount",
        "generatedCount"
    },
    "distribution":"gaussian",
    "upperBound":{
        "multiplier":"Inf"
    },
    "lowerBound":{
        "multiplier":"1.0"
    }
}
```
Offline System
The heart of the product

Tracking
- All member activities are tracked with the parameter of interest.
- ETL into HDFS for easy consumption

Utility Evaluation
- Using the tracking data we generate \((x, f_k(x))\) for each function \(k\).
- The data is kept in appropriate schema that is problem agnostic.

Bayesian Optimization
- The data and the problem specifications are input to this.
- Using the data, we first estimate each of the posterior distributions of the latent functions.
- Sample from those distributions to get distribution of the parameter \(x\) which maximizes the objective.
Online System
Serving hundreds of millions of users

Parameter Sampling

- For each member m visiting LinkedIn,
- Depending on the parameter store, we either evaluate $<m, \text{parameterValue}>$
- Or we directly call the store to retrieve $<m, \text{parameterValue}>$

Online Serving

- Depending on the parameter value that is retrieved (say x), the member’s full feed is scored according to the ranking function and served

$$S(m,u) := P_{VA}(m,u) + x_{EFS} P_{EFS}(m,u) + x_{JA} P_{JA}(m,u)$$