

Online Parameter Selection for Web-based Ranking via Bayesian Optimization

Sep 12, 2019

Kinjal Basu

Staff Software Engineer, Flagship Al

Agenda

- Problem Setup
 LinkedIn Feed
- 2 Reformulation as a Black-Box Optimization
- Z Explore-Exploit Algorithm
 Thompson Sampling
- 4 Infrastructure
- 5 Results

LinkedIn Feed

Mission: Enable Members to build an active professional community that advances their career.

LinkedIn Feed

Mission: Enable Members to build an active professional community that advances their career.

Heterogenous List:

- Shares from a member's connections
- Recommendations such as jobs, articles, courses, etc.
- Sponsored content or ads

Important Metrics

Viral Actions (VA)

Members liked, shared or commented on an item

Job Applies (JA)

Members applied for a job

Engaged Feed Sessions (EFS)

Sessions where a member engaged with anything on feed.

Ranking Function

• m – Member, u - Item

$$S(m,u) \coloneqq P_{VA}(m,u) + x_{EFS} P_{EFS}(m,u) + x_{JA} P_{JA}(m,u)$$

- The weight vector $\mathbf{x} = (x_{EFS}, x_{JA})$ controls the balance between the three business metrics: EFS, VA and JA.
- A Sample Business Strategy is

Maximize.
$$VA(x)$$

s.t. $EFS(x) > c_{EFS}$
 $JA(x) > c_{JA}$

Major Challenges

- The optimal value of x (tuning parameters) changes over time
- Example of changes
 - New content types are added
 - Score distribution changes (Feature drift, updated models, etc.)

- With every change engineers would manually find the optimal x
 - Run multiple A/B tests
- Not the best use of engineering time

Reformulation into a Black-Box Optimization Problem

Modeling The Metrics

- $Y_{i,j}^k(x) \in \{0,1\}$ denotes if the *i*-th member during the *j*-th session which was served by parameter x, did action k or not. Here k = VA, EFS or JA.
- We model this data as follows

$$Y_i^k \sim \text{Binomial}\left(n_i(x), \sigma\left(f_k(x)\right)\right)$$

where $n_i(x)$ is the total number of sessions of member i which was served by x and f_k is a latent function for the particular metric.

- Assume a Gaussian process prior on each of the latent function f_k .

Reformulation

We approximate each of the metrics as:

$$VA(x) = \sigma \left(f_{VA}(x) \right)$$

 $EFS(x) = \sigma \left(f_{EFS}(x) \right)$
 $JA(x) = \sigma \left(f_{JA}(x) \right)$

The original optimization problem can be written through this parametrization.

Maximize.
$$VA(x)$$

 $s.t.$ $EFS(x) > c_{EFS}$
 $JA(x) > c_{JA}$ $S.t.$ $\sigma\left(f_{EFS}(x)\right) > c_{EFS}$
 $\sigma\left(f_{JA}(x)\right) > c_{JA}$ $\sigma\left(f_{JA}(x)\right) > c_{JA}$

Benefit: The last problem can now be solved using techniques from the literature of Bayesian Optimization.

Explore-Exploit Algorithms

A Quick Crash Course

. Explore-Exploit scheme to solve $\frac{Maximize}{x \in X}$

- Explore-Exploit scheme to solve $\frac{Maximize}{x \in X}$
- Assume a Gaussian Process prior on f(x).
- Start with uniform sample get(x, f(x))
- Estimate the mean function and covariance kernel

- Explore-Exploit scheme to solve $\frac{Maximize}{x \in X}$
- Assume a Gaussian Process prior on f(x).
- Start with uniform sample get(x, f(x))
- Estimate the mean function and covariance kernel
- Draw the next sample \boldsymbol{x} which maximizes an "acquisition function" or predictive posterior.
- · Continue the process.

- Explore-Exploit scheme to solve $\frac{Maximize}{x \in X}$
- Assume a Gaussian Process prior on f(x).
- Start with uniform sample get(x, f(x))
- Estimate the mean function and covariance kernel
- Draw the next sample \boldsymbol{x} which maximizes an "acquisition function" or predictive posterior.
- · Continue the process.

- Assume a Gaussian Process prior on f(x).
- Start with uniform sample get(x, f(x))
- Estimate the mean function and covariance kernel
- Draw the next sample \boldsymbol{x} which maximizes an "acquisition function" or predictive posterior.
- · Continue the process.

- Assume a Gaussian Process prior on f(x).
- Start with uniform sample get(x, f(x))
- Estimate the mean function and covariance kernel
- Draw the next sample \boldsymbol{x} which maximizes an "acquisition function" or predictive posterior.
- · Continue the process.

Thompson Sampling

- Consider a Gaussian Process Prior on each f_k , where k is VA, EFS or JA
- Observe the data $(x, f_k(x))$
- Obtain the posterior of each f_k which is another Gaussian Process
- Sample from the posterior distribution and generate samples for the overall objective function.
- We get the next distribution of hyperparameters by maximizing the sampled objectives (over a grid of QMC points).
- Continue this process till convergence.

Maximize
$$\sigma(f_{VA}(x))$$

s.t. $\sigma(f_{EFS}(x)) > c_{EFS}$
 $\sigma(f_{JA}(x)) > c_{JA}$

Infrastructure

Overall System Architecture

Offline System

The heart of the product

Tracking

- All member activities are tracked with the parameter of interest.
- ETL into HDFS for easy consumption

Utility Evaluation

- Using the tracking data we generate $(x, f_k(x))$ for each function k.
- The data is kept in appropriate schema that is problem agnostic.

Bayesian Optimization

- The data and the problem specifications are input to this.
- Using the data, we first estimate each of the posterior distributions of the latent functions.
- Sample from those
 distributions to get
 distribution of the parameter
 x which maximizes the
 objective.

The Parameter Store and Online Serving

- · The Bayesian Optimization library generates
 - · A set of potential candidates for trying in the next round $(x_1, x_2, ..., x_n)$
 - . A probability of how likely each point is the true maximizer $(p_1,p_2,...,p_n)$ such that $\sum_{i=1}^n p_i = 1$
- To serve members with the above distribution, each memberId is mapped to [0,1] using a hashing function h. For example, if

$$\sum_{i=1}^k p_i < h(Kinjal) \le \sum_{i=1}^{k+1} p_i$$

Then my feed is served with parameter x_{k+1}

- The parameter store (depending on use-case) can contain

 - . <memberId, parameterValue>

Online System

Serving hundreds of millions of users

Parameter Sampling

- For each member m visiting Linkedln,
- Depending on the parameter store, we either evaluate <m, parameter Value>
- Or we directly call the store to retrieve
 parameterValue>

Online Serving

 Depending on the parameter value that is retrieved (say x), the member's full feed is scored according to the ranking function and served

$$S(m,u) := P_{VA}(m,u) + x_{EFS} P_{EFS}(m,u) + x_{JA} P_{JA}(m,u)$$

Practical Design Considerations

- Consistency in user experience.
 - Randomize at member level instead of session level.
- Offline Flow Frequency
 - Batch computation where we collect data for an hour and run the offline flow each hour to update the sampling distribution.
- Assume $(f_{VA}, f_{EFS}, f_{IA})$ to be Independent
 - Works well in our setup. Joint modeling might reduce variance.
- Choice of Business Constraint Thresholds.
 - Chosen to allow for a small drop.

Results

Simulation Results

(a) Trimodal Shekel Function

(b) Decay of log relative square error

Online A/B Testing Results

Table 1: Online A/B results for Online Parameter Selection in LinkedIn Feed Ranking

Metric	Lift (%) vs	Lift (%) vs
	Control x_{c_1}	Control x_{c_2}
Viral Actions	+3.3%	+1.2%
Engaged Feed Sessions	-0.8%	0%
Job Applies	+12.8%	+6.4%

Online Convergence Plots

Key Takeaways

- Removes the human in the loop: Fully automatic process to find the optimal parameters.
- Drastically improves developer productivity.
- Can scale to multiple competing metrics.
- Very easy onboarding infra for multiple vertical teams. Currently used by Ads, Feed, Notifications, PYMK, etc.
- Future Direction
 - Add on other Explore-Exploit algorithms.
 - Move from Black-Box to Grey-Box optimizations
 - · Create a dependent structure on different utilities to better model the variance.
 - · Automatically identify the primary metric by understanding the models better.

Thankyou

Appendix – Library API

Problem Specifications

```
"treatmentModels": ["treatmentModel-1"],
"controlModel": "controlModel-1",
"exploreNumIterations": "6",
"params":[
      "fieldName": "threshold",
      "parameterInfo": {
        "searchRange": {
          "low":"0.17",
          "high":"0.24"
        "dataType": "Float"
```

Appendix – Library API

Objective and Constraints

```
"Objective": {
  "objectiveType": "max",
  "objectiveParts":[
      "utilityName": "ClickRate",
      "ColumnNames": [
        "clickCount",
        "impressedCount"
      "distribution": "gaussian"
```

```
"Constraints":[
    "utilityName": "SendsByGenerated",
    "ColumnNames":[
      "sentCount",
      "generatedCount"
    "distribution": "gaussian",
    "upperBound": {
      "multiplier": "Inf"
    "lowerBound": {
      "multiplier": "1.0"
```