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Overview



Introduction

Large-Scale Linear Programs (LP) has several applications on web



Problems of Extreme Scale

● Billions to Trillions of Variables

● Ad-hoc Solutions
● Splitting the problem to smaller sub-problem à No guarantee of optimality

● Exploit the Structure of the Problem

● Solve a Perturbation of the Primal Problem.
● Smooth Gradient
● Efficient computation



Motivating Example

Friend or Connection Matching Problem

● Maximize Value
● Total invites sent is greater than a threshold
● Limit on invitations per member to prevent 

overwhelming members

● 𝑝! - Value Model
● 𝑝" - Invitation Model
● 𝑥#$ - Probability of showing user j to user i

Scale:
• 𝐼 ≈ 10%
• 𝐽 ≈ 10&
• 𝑛 ≈ 10!"

( 1 Trillion Decision Variables)
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✓
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◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

@
D11 . . . D1I

. . .

Dm21 . . . Dm2I

1

A

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.
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● Users 𝑖,    Items 𝑗,    and    𝑥#$ is the association 
between (𝑖, 𝑗)

● 𝑛 = 𝐼𝐽 can range in 100s of millions to 10s of trillions
● 𝐶# are simple constraints (i.e. allows for efficient 

projections)

General Framework

Global Constraints
Cohort Level Constraints
Eg: Total Invite Constraint  

Item level constraints
Eg: Limits on invitation per user



ECLIPSE: Extreme Scale LP 
Solver
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Key Observation:

Primal LP:

Primal QP:

Old idea: Perturbation of the LP (Mangasarian & Meyer ’79; Nesterov ‘05; Osher et al ‘11…)
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Strong duality

Solving The Problem
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Primal:

• Observation-1: Exact Regularization (Mangasarian & Meyer ’79; Friedlander Tseng ‘08)

• Observation-2: Error Bound (Nesterov ‘05)
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Solving The Problem

Dual:
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• Observation-1: Dual objective is smooth (implicitly defined) 
[Nesterov ‘05]

• Observation-2: Gradient expression (Danskin’s Theorem)g�(�) := min
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• Proximal Gradient Based methods 
(Acceleration, Restarts)

• Optimal convergence rates.

ECLIPSE Algorithm

• Key bottleneck: Matrix-vector multiplication
• Simple projection operation
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Solving The Problem



Overall Algorithm

Input: At Iteration k:
Dual

Get Primal:

Compute Gradient:

Update Dual:
GD: 

AGD: 

Next 
Iteration



Applications



Volume Optimization

Maximize Sessions

● Total number of emails / 
notifications bounded

● Clicks above a threshold
● Disablement below a threshold

Generalized from global to cohort level 
systems and member level systems 



Multi-Objective Optimization

● Maximize Metric 1
● Metric 2 is greater than a 

minimum
● Metric 3 is bounded
● …

● Most Product Applications

● Engagement vs Revenue
● Sessions vs Notification / 

Email Volume
● Member Value vs Annoyance



System Infrastructure



System Architecture

• Data is collected from different sources 
and restructured to form Input 𝐴, 𝑏, 𝑐



System Architecture
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• The solver is called which runs the overall 
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• The data is split into multiple executors and 

they perform matrix vector multiplications in 
parallel

• The driver collects the dual and broadcasts  
it back to continue the iterations



System Architecture

• Data is collected from different sources 
and restructured to form Input 𝐴, 𝑏, 𝑐

• The solver is called which runs the overall 
iterations. 
• The data is split into multiple executors and 

they perform matrix vector multiplications in 
parallel

• The driver collects the dual and broadcasts  
it back to continue the iterations

• On convergence the final duals are 
returned which are used in online serving



Detailed Spark Implementation

Data Representation

• Customized DistributedMatrix
API

• : BlockMatrix API from 
Apache MLLib

• : Leverage Diagonal 
structure and implement 
DistributedVector API using 
RDD (index, Vector)

Estimating Primal

• Component wise Matrix 
Multiplications and 
Projections are done in 
parallel

• We cache 𝐴 in executor and 
broadcast duals to minimize 
communication cost.

• The overall complexity to get 
the primal is 𝑂(𝐽)

Estimating Gradient

• Most computationally 
expensive step to get 

• The worst-case complexity is 
𝑂 𝑛 = 𝐼𝐽



Experimental Results



Comparative Results

Please see the full paper for other comparisons

• We compare with a technique of 
splitting the problem (SOTA):



Real Data Results

• Test on large-scale volume 
optimization and matching 
problems

• Spark 2.3 with up to 800 
executors

• 1 Trillion use case 
converged within 12 hours

SCS: O’Donoghue et al (2016)



Key Takeaways



Key Takeaways

• A framework for solving structured LP problems arising in several applications 
from internet industry

• Most multi-objective optimization can be framed through this.

• Given the computation resources, we can scale to extremely large problems.

• We can easily scale up to 1 Trillion variables on real data.
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