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Connection Recommendation at LinkedIn



Fairness Criteria for score-based Ranking
Notation: Binary response Y, predictors X, prediction Score s(X), characteristic C (e.g. gender).

1. Unawareness: X does not contain C

2. Demographic Parity: s(X) is independent of C

3. Equality of Opportunity: s(X) is independent of C conditional on Y = 1

4. Equalized Odds: s(X) is independent of C conditional on Y

5. Fair Offline Performance: equal (partial) ROC-AUC of (s(X), Y) given C = c for all c 

This is by no means an exhaustive list.
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Mitigation Strategies

Preprocessing

Removing bias from 
training and validation 
data

Inprocessing

Changes in the model 
training to achieve 
fairness goals

Regularizers or changes 
to the loss functions

Post Processing

Changing model-scores 
after training

Model-agnostic

Wide-applications in 
large-organization



Equality of 
Opportunity



CDF Transformation

● EOpp Definition: P(s ≤ t | Y = 1, C = c1) = P(s ≤ t | Y = 1, C = c2)
Equivalently: S is independent of C given Y = 1

● EOpp Transformation: Apply Fc,1(sc) to all scores in group C=c, where Fc,1 is the CDF of scores in 
group c with Y=1.

After EOpp transformationBefore EOpp transformation

Group c1 scores

Group c2 scores

Group c1 scores

Group c2 scores

Scores with Y=1 Scores with Y=0 



Fairness-Performance Trade-off

● EOpp transformation: s* = ∑ Fc,1(s ) 1{C = c}

● G is the CDF of transformed scores => G(s*) has a Uniform[0, 1] distribution

● F is CDF of original scores => F-1(G(s*)) brings scores back to original scale

● To relax the strict Equality of Opportunity, we may consider the following modification:

(1 -  ɑ) s +  ɑ  F
-1(G (s*)) 

where 0 ≤ ɑ ≤ 1 can be tuned to achieve a fairness-performance trade-off.



Equalized 
Odds



Equalized Odds for Ranking

Definition: The ranker satisfies Equalized Odds with respect to characteristic (attribute) C and label Y if 

P(s ⪰ t |C = c1, Y=1)   =  P(s ⪰ t | C = c2, Y=1), and 
P(s ⪰ t | C = c1, Y=0)  =  P(s ⪰ t | C = c2, Y=0) 

for all t, 

Equivalently:
● S is independent of C given Y

Properties: 
● The ROC curves are identical between groups



Connection Recommendation Example

Fairness to members being recommended: 

● “Positive” outcome   Y = 1  :  Invite sent
● “Negative” outcome  Y = 0  : Invite not sent

● Group: Frequent and Infrequent members

Equalized odds ensures fair exposure of 
candidate that will (or will not) be sent invitations 



Exposure of Frequent and Infrequent Members



How to Re-Rank for Equalized Odds

● Unlike equality of opportunity, there is not a (strictly) monotonic transformation that gives equalized 
odds.  

○ Re-ranking may result in some loss of model performance

● Simple idea: For a classifier, we could get equalized odds by randomly changing classification with 
suitable probabilities

○ For an individual/item with characteristic C=c, replace Y = y with a draw from Bernoulli(py,c)

○ Probabilities chosen so that the equalized odds constraints hold  

Equalized odds ensures that exposure of candidate that will (or will not) be sent 
invitations 

Equalized odds can be ensured through a probabilistic allocation 



Methodology

● Bin the scores into disjoint intervals b1,...,bT  

● Randomize model scores between the intervals so that the probability that the score falls in each of 
these intervals is independent of C given Y.

● t(S) = new score after probabilistic allocation

|P(t(S) in bt | C=k,Y=1) - P(t(S) in bt | C=l,Y=1)| < ε, and 
                                  |P(t(S) in bt | C=k,Y=0) - P(t(S) in bt | C=l,Y=0)| < ε

for all t, k, l

● ε allows for a tradeoff between fairness and model performance

● How do we choose the probability of assigning the scores to bins?



LP formulation
Objective: Maximize Model Performance

              s.t. Equalized Odds constraint hold

What is the objective that “Maximize Model Performance”?
● Minimize score changes due to calibration

                           Minimize E|t(S) - S|             where t(s) is the transformed score

● An approximation to AUC is a quadratic function of the probabilities

● In general, any loss function is okay, but may make solving the optimization problem challenging

                  Minimize  E|t(S) - S| 

s.t. |P(t(S) in bt | C=k,Y=1) - P(t(S) in bt | C=l,Y=1)| < ε 

               |P(t(S) in bt | C=k,Y=0) - P(t(S) in bt | C=l,Y=0)| < ε             for all t, k, l



Exposure after re-ranked for equalized odds



Experiments



Simulation Setup

● We create a population of 50k items with item_id, relevance_score, true_label, 
characteristic

● Training Data: 100k sessions with randomly selecting 100 items from the population, where 
for all 100 items in each session, we obtain

○ observed_score =  relevance_score + noise;
○ observed_position = rank based on observed_scores;
○ observed_label = true_label * Bernoulli(1/log(1+j))

● Validation Data (EOpp/EOdds): 50k sessions with randomly selecting 100 items from the 
population, where for all 100 items in each session, we obtain

○ fair_score =  fairness_transformation(relevance_score + noise);
○ observed_position = rank based on fair_score;
○ observed_label = true_label * Bernoulli(1/log(1+j))





Fairness-performance trade-off



Real World Experiments



Key Takeaways

● Mechanism of mitigation unfairness through a post-processing system.
○ Agnostic to how a model is getting trained.
○ Wide applicability
○ Scalability

● Fairness Performance tradeoff can vary across applications

● Extensibility 
○ multiple outcomes
○ multiple fairness constraints
○ Position bias (full paper)

https://arxiv.org/pdf/2006.11350.pdf


Thank you! 
Questions?



Appendix



Position Bias 
Adjustment



EOpp/EOdds in the presence of position bias

● Let Y(j) denote the counterfactual response when an item is placed at position j.

● Position Bias (positive response decay): wj = P(Y(j) = 1 | Y(1) = 1) < 1.

● Let 𝛾 denote the observed position and let Y(𝛾) denote the observed response.

● EOpp and EOdds: 
P(s ≤ t | Y(𝛾) = y, C = c1) = P(s ≤ t | Y(𝛾) = y, C = c2) for all c1, c2 
where y = 1 for  EOpp and y = 0, 1 for EOdds.

● Without position bias adjustment we will have
P(s* ≤ t | Y*(𝛾) = y, C = c1) = P(s* ≤ t | Y*(𝛾) = y, C = c2) for all c1, c2. 
But we want to have
P(s* ≤ t | Y*(𝛾*) = y, C = c1) = P(s* ≤ t | Y*(𝛾*) = y, C = c2) for all c1, c2

where 𝛾* is the position based on the ranking given by s*.



Position bias estimation 

With randomization

Without randomization
Step 1: Importance weighting to adjust for score distribution discrepancies

Step 2: Truncated product to control the variance of the estimator 

Under mild assumptions, wj = P(Y(j) = 1) / P(Y(1) = 1)   





Position bias estimation



Extensions to multiple outcomes

This framework can be extended to categorical outcomes with (arbitrary) possible values as well as arbitrary 

number of (attribute) groups

PYMK example: Fairness to members being recommended.  We can consider more granular outcomes:
● Invite not sent
● Invite sent but not accepted
● Invite sent and accepted

Generally, we can use the equalized odds framework to balance exposure according to outcomes along 
funnel metrics



LP formulation: Simply add constraints for additional 
outcomes!

Objective: Maximize Model Performance
s.t. Bin probabilities for each outcome are within ε for each pair of groups

What is the objective that “Maximize Model Performance”?
● Minimize score changes due to calibration

                           Minimize E|t(S) - S|

                where t(s) is the transformed score

● For multiple outcomes, auc may no longer make sense


