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Introduction

Problem : Quasi-Monte Carlo integration over product spaces
of the form X s where X ⊆ Rd .

µ =
1

vol(X )s

∫
X s

f (x) dx .
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Usual Approach for s = 1

Measure preserving transformation τ : [0, 1]d → X .

u ∼ U[0, 1)d then x = τ(u) ∼ U(X ).
Now use

µ̂ =
1
n

n∑
i=1

f (x i ) =
1
n

n∑
i=1

f (τ(u i ))

This is fine for MC. For QMC we often find that f ◦ τ 6∈ BVHK

[Pillards and Cools (2005), Fang and Wang (1994)]
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General Space X s

Our estimates are equal weight rules

µ̂ =
1
n

n∑
i=1

f (x i ), where x i = φ(u i )

for random points u i ∈ [0, 1]s .

Most interesting case : d = 2, such as, triangles, spherical
triangles and discs.
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Overview of Results

For any f ∈ L2(X s), Var(µ̂) = o(1/n).

For each finite n, Var(µ̂) is bounded by a finite multiple of the
Monte Carlo variance, uniformly over all f ∈ L2(X s).
Under smoothness conditions on f and a sphericity constraint
on the partitioning of X we show

Var(µ̂) = O

(
(log n)s−1

n1+2/d

)
.
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Function φ
Nested Uniform Scrambling

Special Case: s = 1, d = 2,X is Triangle.
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Figure: Kronecker Triangular Lattice using 3π/8

Kronecker Points. Uses badly approximable numbers.

Convergence rate O(log n/n)
Fails for d > 2 and also for d = 2, s > 1 due to Littlewood
conjecture.

[B. and Owen (2015a)]
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Figure: Kronecker Triangular Lattice using 3π/8

Kronecker Points. Uses badly approximable numbers.
Convergence rate O(log n/n)

Fails for d > 2 and also for d = 2, s > 1 due to Littlewood
conjecture.

[B. and Owen (2015a)]

8 / 32



Introduction
Scrambled Geometric Net

Results
Proof Idea
Summary

Function φ
Nested Uniform Scrambling

Special Case: s = 1, d = 2,X is Triangle.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Angle 3pi/8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Angle 5pi/8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Angle pi/4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

Angle pi/2

Triangular lattice points

Figure: Kronecker Triangular Lattice using 3π/8

Kronecker Points. Uses badly approximable numbers.
Convergence rate O(log n/n)
Fails for d > 2 and also for d = 2, s > 1 due to Littlewood
conjecture.

[B. and Owen (2015a)]
8 / 32



Introduction
Scrambled Geometric Net

Results
Proof Idea
Summary

Function φ
Nested Uniform Scrambling

Special Case: s = 1, d = 2,X is Triangle.

0

12

3

AB

C

00
01 02

03 10
1112

13

20
2122

23

30
3132

33

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

Triangular van der Corput
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k−1 where
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xn = 0.d1d2 . . .
Discrepancy: O(1/

√
n). RMSE under randomization: O(1/n).

[Brandolini et. al. (2013)]
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Function φ
Nested Uniform Scrambling

Splits on the Triangle
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Figure: Splits of a triangle X for bases b = 2, 3 and 4. The subtriangles
Xj are labeled by the digit j ∈ Zb.
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Recursive Splits on the Triangle

26 Decomposition 33 Decomposition 43 Decomposition

Figure: The base b splits from previous figure carried out to k = 6 or 3
or 4 levels.
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Function φ
Nested Uniform Scrambling

Sphericity Constraint

Definition 1

Let X be a recursive split of X ∈ Rd in base b. Then X satisfies
the sphericity condition if there exists C <∞ such that
diam(Xa1,...,ak ) ≤ Cb−k/d holds for all cells Xa1,...,ak in X.

Definition 2
A recursive split X in base b is convergent if for every infinite
sequence a1, a2, a3, · · · ∈ Zb, the cells Xa1,a2,...aK converges a point
as K →∞. That point is denoted limK→∞Xa1,a2,...,aK .

φ(x) = limK→∞Xx1,x2,...,xK where x has the base b representation
0.x1x2 . . . .

12 / 32
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Splitting on the Disc

Figure: A recursive binary equal area splitting of the unit disk, keeping
the aspect ratio close to unity.
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Function φ
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Nested Uniform Scrambling

For a ∈ [0, 1) let a = (0.a1a2 . . .)b.

Random permutations to the digits ak yielding xk ∈ Zb and
deliver x = (0.x1x2 . . .)b.
xk+1 = π•a1a2...ak (ak+1) where all of these permutations are
independent and uniform.
For a = (a1, . . . , as) ∈ [0, 1)s , we apply nested uniform
scramble component-wise.
A nested uniform scramble of a1, . . . , an ∈ [0, 1)s applies the
same set of permutations to the digits of all n of those points.
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Scrambled Geometric nets in X s via splitting

For s ≥ 1, let ai be (t,m, s)-net in base b

Let u i ∈ [0, 1]s - nested uniform scrambling.
xij = φ(uij) for j = 1, . . . , s. Then x i ∈ X s and we use

µ̂ =
1
n

n∑
i=1

f (x i ).

[Niederreiter (1992), Dick and Pillichshammer (2010), Owen (1995).]
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Scrambled Net Variance for smooth functions

Results

Theorem 1
Let u1, . . . ,un be a nested uniform scramble of a (t,m, s)-net in
base b ≥ 2 and let x i = φ(u i ) componentwise. Then for any
f ∈ L2(X 1:s),

E(µ̂) = µ

Var(µ̂) = o
(1
n

)
as n→∞.
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Results

Theorem 2
Under the conditions of Theorem 1

Var(µ̂) ≤ bt
(b + 1
b − 1

)s−1σ2

n
,

where σ2 = Var(f (x)) for x ∼ U(X 1:s). If t = 0, then
Var(µ̂) ≤ eσ2/n

.
= 2.718σ2/n.
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Results in L2 not requiring smoothness
Scrambled Net Variance for smooth functions

Main Theorem

Theorem : B. and Owen (2015b)

Let u1, . . . ,un be the points of a randomized (t,m, s)-net in base
b. Let x i = φ(u i ) ∈ X 1:s for i = 1, . . . , n where φ is the
componentwise application of the transformation from convergent
recursive splits in base b. Then for a smooth f on X 1:s ,

Var(µ̂) = O

(
(log n)s−1

n1+2/d

)
.
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Results in L2 not requiring smoothness
Scrambled Net Variance for smooth functions

Sobol’ Extensible X

A closed set X ⊆ Rm with non-empty interior is said to be
Sobol’ extensible if there exists a point c ∈ X such that z ∈ X
implies rect[c , z ] ⊆ X . The point c is called the anchor.
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Results in L2 not requiring smoothness
Scrambled Net Variance for smooth functions

Sobol Extensible X

c

c

Figure: Sobol’ extensible regions. At left, X is the triangle with vertices
(0, 0), (0,

√
2), (
√
2, 0) and the anchor is c = (0, 0). At right, X is a

circular disk centered its anchor c . The dashed lines depict some
rectangular hulls joining selected points to the anchor.
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Results in L2 not requiring smoothness
Scrambled Net Variance for smooth functions

Non Sobol Extensible X

ε

Figure: Non-Sobol’ extensible regions. At left, X is an annular region
centered at the origin. At right, X is the unit square exclusive of an
ε-wide strip centered on the diagonal.
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Results in L2 not requiring smoothness
Scrambled Net Variance for smooth functions

Smoothness Condition

Let X ⊆ Rm for m ∈ N be Sobol extensible. The function
f : X → R is said to be smooth if ∂1:mf is continuous on X .

For general X , f is said to be smooth if f ∈ Cm(X ).
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Proof Idea of Main Theorem

If X is convergent and f ∈ L2(X ) then,

f (x) = 〈f , ϕ〉ϕ(x) +
∞∑
k=1

bk−1∑
t=0

b−1∑
c=0

〈f , ψktc〉ψktc(x).

ψktc are Haar wavelets in base b.

25 / 32



Introduction
Scrambled Geometric Net

Results
Proof Idea
Summary

Using ANOVA and Multiresolution
Variance and gain coefficients
Technical Challenges

Proof Idea of Main Theorem

If X is convergent and f ∈ L2(X ) then,

f (x) = 〈f , ϕ〉ϕ(x) +
∞∑
k=1

bk−1∑
t=0

b−1∑
c=0

〈f , ψktc〉ψktc(x).

ψktc are Haar wavelets in base b.

25 / 32



Introduction
Scrambled Geometric Net

Results
Proof Idea
Summary

Using ANOVA and Multiresolution
Variance and gain coefficients
Technical Challenges

Proof Idea of Main Theorem

Multiresolution of L2(X 1:s) is

f (x) =
∑
u⊆1:s

∑
κ|u

∑
τ |u,κ

∑
γ|u

〈ψuκτγ , f 〉ψuκτγ(x)

= µ+
∑
|u|>0

∑
κ|u

∑
τ |u,κ

∑
γ|u

〈ψuκτγ , f 〉ψuκτγ(x).

The sum over κ is over all possible values of κ given the
subset u.

ψuκτγ are tensor products of Haar wavelets in base b.
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Variance expression

Var(µ̂) = E
(

1
n2

n∑
i=1

n∑
i ′=1

∑
|u|>0

∑
κ|u

∑
τ |u,κ

∑
γ|u

∑
|u′|>0

∑
κ′|u′

∑
τ ′|u′,κ′

∑
γ′|u′

〈f , ψuκτγ〉〈f , ψu′κ′τ ′γ′〉ψuκτγ(x i )ψu′κ′τ ′γ′(x i ′)

)
.

Var(µ̂) =
∑
|u|>0

∑
κ|u

Var
(
1
n

n∑
i=1

νuκ(x i )

)
,

where νuκ(x) =
∑

τ |u,κ
∑

γ|u〈f , ψuκτγ〉ψuκτγ(x) with
ν∅,() = µ.
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Simplification of Variance expression

σ2
uκ =

∫
X 1:s ν

2
uκ(x) dx .

The multiresolution-based ANOVA decomposition is

σ2 =

∫
X 1:s

(f (x)− µ)2 dx =
∑
|u|>0

∑
κ|u

σ2
uκ

From the equidistribution properties of ai

Var(µ̂) =
1
n

∑
|u|>0

∑
κ|u

Γu,κσ
2
uκ

≤ bt

n

(
b + 1
b − 1

)s ∑
|u|>0

∑
|κ|+|u|>m−t

σ2
uκ.
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Proof Idea Continued

Bound σ2
uκ.

σ2
uκ =

∫
X 1:s

ν2
uκ(x) dx

=
∑
τ |u,κ

∑
γ,γ′|u

〈f , ψuκτγ〉〈f , ψuκτγ′〉
∫
X 1:s

ψuκτγ(x)ψuκτγ′(x) dx

=
∑
τ |u,κ

∑
γ,γ′|u

〈f , ψuκτγ〉〈f , ψuκτγ′〉
∏
j∈u

(1γj=γ′j − b−1)

Bound |〈f , ψuκτγ〉|
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Proof Idea Continued

The coefficients |〈f , ψuκτγ〉| decay quickly.

Extend the region from X s to a bounding box
Extend the integrand to that bounding box.
Sobol’s low variance extension given by

f̃ (x) =
∑

u⊆1:m

∫
[cu ,xu ]

∂uf (c−u:yu)1c−u :yu∈X dyu

Whitney extension requiring extra smoothness.
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Summary

RQMC available for X s and X ⊂ Rd

Root mean squared error of O(n−1/2−1/d(log(n))(s−1)/2).
We can extend it to unequal dj by taking d = maxj∈1:s dj .
QMC and composition mapping, O(n−1 log(n)sd−1)

Advantage for d = 1 and 2
Convergence guarantee as well as error estimates.
Given additional smoothness perhaps higher order nets would
work.

[Dick and Baldeaux (2009)]
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Thank you!
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