A/B Testing in Dense Large-Scale Networks: Design and Inference
PREETAM NANDY, KINJAL BASU, SHAUNAK CHATTERJEE, YE TU
LinkedIn Corporation

Network Effect in A/B Testing

- All neighbors of a treated node are not receiving the same treatment as the treated node.

Ego-cluster Experiment

- Works under minimal assumptions.
- Does not work well for dense networks.

Optimal Allocation Strategy (OAS)

Randomly choose additional nodes to assign C.

\[\sum \text{total exposure of the center node in } \partial \Delta \text{ and } \partial \Delta \text{ with respect to certain constraints controlling the risk of the experiment} \]

Importance Sampling (IS)

\[\text{Response: } \{Y_1, \ldots, Y_n\} \text{ and } \{X_1, \ldots, X_n\} \]

OAS Experiment

1. Randomly assign A and B.
2. Randomly choose additional nodes X.
3. Solve a constrained optimization to assign C to X.
4. Run experiment and collect data.
5. Importance sampling correction.

Network Effect in Exposure Redistribution Experiments

- The total exposure mismatch can be cured by appropriately modifying the columns corresponding to some unassigned nodes.

References