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The Problem
Motivation

Introduction

Problem : Numerical Integration over triangular domain using
quasi-Monte Carlo (QMC) sampling.

QMC in [0, 1]d .

µ =

∫
[0,1]d

f (x)dx µ̂n =
1

n

n∑
i=1

f (xi )

Koksma-Hlawka inequality

|µ̂n − µ| 6 D∗n(x1, . . . , xn)× VHK (f )

Recent work relating to general spaces by Aistleitner et al.,
(2012), Brandolini et. al (2013)
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Motivation

Need in computer graphics, genetic experimental studies, etc.

Mapping by special functions/transformation from [0, 1]d

Pillards and Cools (2005).

Several notions of discrepancy on the triangle/simplex but no
explicit constructions. Pillards and Cools (2005), Brandolini
et. al (2013).
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Discrepancy

General Notions of Discrepancy

The signed discrepancy of P at the measurable set
S ⊆ Ω ⊂ Rd is

δN(S ;P,Ω) = vol(S ∩ Ω)/vol(Ω)− AN(S ;P)/N.

The absolute discrepancy of points P for a class S of
measurable subsets of Ω is

DN(S;P,Ω) = sup
S∈S

DN(S ;P,Ω),

where
DN(S ;P,Ω) = |δN(S ;P,Ω)|.

Standard QMC works with Ω = [0, 1)d and takes for S the set
of anchored boxes [0, a) with a ∈ [0, 1)d .
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Discrepancy due to Brandolini et al. (2013)

SC = {Ta,b,C | 0 < a <
‖A− C‖, 0 < b < ‖B − C‖}
The parallelogram discrepancy of
points P for Ω = ∆(A,B,C ) is

DP
N (P; Ω) = DN(SP ;P,Ω)

for

SP = SA ∪ SB ∪ SC .

Figure: The construction of
the parallelogram
Ta,b,C = CDFE
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Discrepancy

Discrepancy due to Pillards and Cools (2005)

Ω = ∆((0, 0)T, (0, 1)T, (1, 1)T)

Their discrepancy

DPC
N (P; Ω) = DN(SI ,P,Ω)

where

SI = {[0, a) | a ∈ [0, 1)2}.

Figure: Star Discrepancy on
the Simplex
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Relationship between the discrepancies

Lemma 1

Let TPC be the triangle from Pillards and Cools and for N > 1, let
P be the list of points x1, . . . , xN ∈ TPC . Then

DPC
N (P,TPC ) 6 2DP

N (P,TPC )

Proof

[0, a1)× [0, a2) = [0, a1)× [0, 1)− [0, a1)× [a2, 1)

Taking C to be the vertex (0, 1)T of TPC ,

DPC
N (P;TPC ) 6 2DN(SC ,P,TPC ) 6 2DP

N (P,TPC ).
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Triangular van der Corput construction

van der Corput sampling of [0, 1] the integer
n =

∑
k>1 dkb

k−1 in base b > 2 is mapped to

xn =
∑

k>1 dkb
−k .

Points x1, . . . , xn ∈ [0, 1) have a discrepancy of O(log(n)/n).

Our situation : 4-ary expansion.
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Triangular van der Corput construction

n > 0 in a base 4 representation n =
∑

k>1 dk4k−1 where
dk ∈ {0, 1, 2, 3}
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Figure: A labeled subdivision of ∆(A,B,C ) into 4 and then 16
congruent subtriangles. Next are the first 32 triangular van der Corput
points followed by the first 64. The integer labels come from the base 4
expansion.
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Triangular van der Corput construction

Computation : T = ∆(A,B,C )

T (d) =



∆
(
B+C

2 , A+C
2 , A+B

2

)
, d = 0

∆
(
A, A+B

2 , A+C
2

)
, d = 1

∆
(
B+A

2 ,B, B+C
2

)
, d = 2

∆
(
C+A

2 , C+B
2 ,C

)
, d = 3.

This construction defines an infinite sequence of fT (i) ∈ T for
integers i > 0.

For an n point rule, take x i = fT (i − 1) for i = 1, . . . , n.
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Discrepancy Results

Theorem 1

For an integer k > 0 and non-degenerate triangle Ω = ∆(A,B,C ),
let P consist of x i = fΩ(i − 1) for i = 1, . . . ,N = 4k . Then

DP
N (P; Ω) =


7

9
, N = 1

2

3
√
N
− 1

9N
, else.
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Discrepancy Results

Theorem 2

Let Ω be a nondegenerate triangle, and let P contain points
x i = fΩ(s + i − 1), i = 1, . . . ,N = 4k , for a starting integer s > 1
and an integer k > 0. Then

DP
N (P; Ω) ≤ 2√

N
− 1

N
.
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Proof of Theorem 2

Proof

δN(S) =
∑m

j=0 δN(Sj) where m
is the number of subtriangles
touching a boundary line of
Ta,b,C .

−1/N 6 δN(Sj) 6 1/N.

DN(S ;P) 6 m/N

m 6 2
√
N − 1

DN(SC ;P) 6 (2
√
N − 1)/N

Lb

La

Lb

La

Lb

Lb

LaLa
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Discrepancy Results

Theorem 3

Let Ω be a non-degenerate triangle and, for integer N > 1, let
P = (x1, . . . , xN), where x i = fΩ(i − 1). Then

DP
N (P; Ω) 6 12/

√
N.

Proof:

Let N =
∑k

j=0 aj4
j for some k , with ak 6= 0.

Let P l
j denote a set of 4j consecutive points from P, for

l = 1, . . . , aj and j 6 k . These P l
j can be chosen to partition

the N points x i . Fix any S ∈ SP .

Kinjal Basu Low-discrepancy in Triangle



Introduction
Background

Construction
Conclusion

Triangular van der Corput points
Discrepancy of triangular van der Corput points
Triangular Kronecker Lattice

Proof of Theorem 3

Now,

δN(S ;P) =
1

N

k∑
j=0

aj∑
l=1

4jδ(S ;P l
j ).

Therefore from Theorem 2,

DN(S ;P) = |δN(S ;P)| 6 1

N

k∑
j=0

aj∑
l=1

4j
( 2

2j
− 1

4j

)
6

1

N

k∑
j=0

aj(2j+1 − 1)

6
3

N

(
2(2k+1 − 1)− (k + 1)

)
6

12× 2k

N

and then k 6 log4(N), gives DN(S ;P) 6 12/
√
N.

Taking the supremum over S ∈ SP yields the result.

Kinjal Basu Low-discrepancy in Triangle



Introduction
Background

Construction
Conclusion

Triangular van der Corput points
Discrepancy of triangular van der Corput points
Triangular Kronecker Lattice

Triangular Kronecker Lattice

We use Theorem 1 of Chen and Travaglini (2007)

This construction yields parallel discrepancy of O(logN/N)

Definition 1

A real number θ is said to be badly approximable if there exists a
constant c > 0 such that n||nθ|| > c for every natural number
n ∈ N and || · || denotes the distance from the nearest integer.

Definition 2

Let a, b, c and d be integers with b 6= 0, d 6= 0 and c > 0, where
c is not a perfect square. Then θ = (a + b

√
c)/d is a quadratic

irrational number.
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Triangular Kronecker Lattice

Let Θ = {θ1, . . . , θk} be a set of k > 1 angles in [0, 2π).

Then let A(Θ) be the set of convex polygonal subsets of
[0, 1]2 whose sides make an angle of θi with respect to the
horizontal axis.

Theorem 1 (Chen and Travaglini (2007))

There exists a constant CΘ <∞ such that for any integer N > 1
there exists a list P = (x1, . . . , xN) of points in [0, 1]2 with

DN(A(Θ);P, [0, 1]2) < CΘ log(N)/N.
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Triangular Kronecker Lattice

Lemma 2 (Davenport)

Suppose that the angles θ1, . . . , θk ∈ [0, 2π) are fixed. Then there
exists α ∈ [0, 2π) such that tan(α),tan(α− π/2), tan(α− θ1),. . .
tan(α− θk) are all finite and badly approximable.
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Triangular Kronecker Lattice

R = ∆((0, 0)T, (0, 1)T, (1, 0)T).

Θ = {0, π/2, 3π/4}

Figure: Set of Angles for
Kronecker Construction
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Triangular Kronecker Lattice

Lemma 3

Let α be an angle for which tan(α) is a quadratic irrational
number. Then tan(α), tan(α− π/2) and tan(α− 3π/4) are all
finite and badly approximable.

tan(3π/8) = 1 +
√

2.

tan(5π/8) = −1−
√

2.
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Triangular Kronecker Lattice

Theorem 4

Let N > 1 be an integer and let R defined above be the triangle.
Let α ∈ (0, 2π) be an angle for which tan(α) is a quadratic
irrational. Let P1 be the points of the lattice (2N)−1/2Z2 rotated
anticlockwise by angle α. Let P2 be the points of P1 that lie in R.
If P2 has more than N points, let P3 be any N points from P2, or
if P2 has fewer than N points, let P3 be a list of N points in R
including all those of P2. Then there is a constant C with

DP(P3;R) < C log(N)/N.
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Triangular Kronecker Lattice

3π
8

5π
8

π
4

π
2

Triangular Lattice Points

Figure: Triangular lattice points for target N = 64. Domain is an
equilateral triangle. Angles 3π/8 and 5π/8 have badly approximable
tangents. Angles π/4 and π/2 have integer and infinite tangents
respectively and do not satisfy the conditions for discrepancy
O(log(N)/N).
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Construction Algorithm

Given a target sample size N, an angle α such as 3π/8 satisfying
Lemma 3. and a target triangle ∆(A,B,C ),

Take integer grid Z2

Rotate anti clockwise by α

Shrink by
√

2N

Remove points not in the
triangle.

(Optionally) add/subtract
points to get exactly N points

Linearly map R onto the desired
triangle ∆(A,B,C )
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Triangular Kronecker Lattice

Parallel discrepancy of
triangular lattice points for
angle α = 3π/8 and
various targets N. The
number of points was
always N or N + 1. The
dashed reference line is
1/N. The solid line is
log(N)/N.
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Conclusion

The Kronecker construction attains a lower discrepancy than
the van der Corput construction.

van der Corput construction is extensible and the digits in it
can be randomized.

If f is continuously differentiable, then for N = 4k , the
randomization in Owen (1995) will give root mean square
error O(1/N)

Future Work

Generalization to higher dimensional simplex.

Construction in tensor product spaces.
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Thank you. Questions?
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