Low-discrepancy constructions in the triangle

Kinjal Basu

Department of Statistics
Stanford University

Joint work with Art B. Owen.
ICERM 29th October 2014

Overview

(1) Introduction

- The Problem
- Motivation
(2) Background
- Discrepancy
(3) Construction
- Triangular van der Corput points
- Discrepancy of triangular van der Corput points
- Triangular Kronecker Lattice
(4) Conclusion

Introduction

- Problem: Numerical Integration over triangular domain using quasi-Monte Carlo (QMC) sampling.
- QMC in $[0,1]^{d}$.

$$
\mu=\int_{[0,1]^{d}} f(x) d x \quad \hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

- Koksma-Hlawka inequality

$$
\left|\hat{\mu}_{n}-\mu\right| \leqslant D_{n}^{*}\left(x_{1}, \ldots, x_{n}\right) \times V_{H K}(f)
$$

- Recent work relating to general spaces by Aistleitner et al., (2012), Brandolini et. al (2013)

Motivation

- Need in computer graphics, genetic experimental studies, etc.
- Mapping by special functions/transformation from $[0,1]^{d}$ Pillards and Cools (2005).
- Several notions of discrepancy on the triangle/simplex but no explicit constructions. Pillards and Cools (2005), Brandolini et. al (2013).

General Notions of Discrepancy

- The signed discrepancy of \mathcal{P} at the measurable set $S \subseteq \Omega \subset \mathbb{R}^{d}$ is

$$
\delta_{N}(S ; \mathcal{P}, \Omega)=\operatorname{vol}(S \cap \Omega) / \operatorname{vol}(\Omega)-A_{N}(S ; \mathcal{P}) / N
$$

- The absolute discrepancy of points \mathcal{P} for a class \mathcal{S} of measurable subsets of Ω is

$$
D_{N}(\mathcal{S} ; \mathcal{P}, \Omega)=\sup _{S \in \mathcal{S}} D_{N}(S ; \mathcal{P}, \Omega)
$$

where

$$
D_{N}(S ; \mathcal{P}, \Omega)=\left|\delta_{N}(S ; \mathcal{P}, \Omega)\right|
$$

- Standard QMC works with $\Omega=[0,1)^{d}$ and takes for \mathcal{S} the set of anchored boxes $[0, \boldsymbol{a})$ with $\boldsymbol{a} \in[0,1)^{d}$.

Discrepancy due to Brandolini et al. (2013)

- $\mathcal{S}_{C}=\left\{\mathcal{T}_{a, b, C} \mid 0<a<\right.$

$$
\|A-C\|, 0<b<\|B-C\|\}
$$

- The parallelogram discrepancy of points \mathcal{P} for $\Omega=\Delta(A, B, C)$ is

$$
D_{N}^{P}(\mathcal{P} ; \Omega)=D_{N}\left(\mathcal{S}_{P} ; \mathcal{P}, \Omega\right)
$$

for

$$
\mathcal{S}_{P}=\mathcal{S}_{A} \cup \mathcal{S}_{B} \cup \mathcal{S}_{C}
$$

Figure: The construction of the parallelogram
$\mathcal{T}_{a, b, c}=C D F E$

Discrepancy due to Pillards and Cools (2005)

- $\Omega=\Delta\left((0,0)^{\top},(0,1)^{\top},(1,1)^{\top}\right)$
- Their discrepancy

$$
D_{N}^{P C}(\mathcal{P} ; \Omega)=D_{N}\left(\mathcal{S}_{l}, \mathcal{P}, \Omega\right)
$$

where

$$
\mathcal{S}_{I}=\left\{[0, \boldsymbol{a}) \mid \boldsymbol{a} \in[0,1)^{2}\right\}
$$

Figure: Star Discrepancy on the Simplex

Relationship between the discrepancies

Lemma 1

Let $T_{P C}$ be the triangle from Pillards and Cools and for $N \geqslant 1$, let \mathcal{P} be the list of points $x_{1}, \ldots, x_{N} \in T_{P C}$. Then

$$
D_{N}^{P C}\left(\mathcal{P}, T_{P C}\right) \leqslant 2 D_{N}^{P}\left(\mathcal{P}, T_{P C}\right)
$$

Proof

- $\left[0, a_{1}\right) \times\left[0, a_{2}\right)=\left[0, a_{1}\right) \times[0,1)-\left[0, a_{1}\right) \times\left[a_{2}, 1\right)$
- Taking C to be the vertex $(0,1)^{\top}$ of $T_{P C}$,
- $D_{N}^{P C}\left(\mathcal{P} ; T_{P C}\right) \leqslant 2 D_{N}\left(\mathcal{S}_{C}, \mathcal{P}, T_{P C}\right) \leqslant 2 D_{N}^{P}\left(\mathcal{P}, T_{P C}\right)$.

Triangular van der Corput construction

- van der Corput sampling of $[0,1]$ the integer $n=\sum_{k \geqslant 1} d_{k} b^{k-1}$ in base $b \geqslant 2$ is mapped to $x_{n}=\sum_{k \geqslant 1} d_{k} b^{-k}$.
- Points $x_{1}, \ldots, x_{n} \in[0,1)$ have a discrepancy of $O(\log (n) / n)$.
- Our situation : 4-ary expansion.

Triangular van der Corput construction

- $n \geqslant 0$ in a base 4 representation $n=\sum_{k \geqslant 1} d_{k} 4^{k-1}$ where $d_{k} \in\{0,1,2,3\}$

Figure: A labeled subdivision of $\Delta(A, B, C)$ into 4 and then 16 congruent subtriangles. Next are the first 32 triangular van der Corput points followed by the first 64 . The integer labels come from the base 4 expansion.

Triangular van der Corput construction

- Computation : $T=\Delta(A, B, C)$

$$
T(d)= \begin{cases}\Delta\left(\frac{B+C}{2}, \frac{A+C}{2}, \frac{A+B}{2}\right), & d=0 \\ \Delta\left(A, \frac{A+B}{2}, \frac{A+C}{2}\right), & d=1 \\ \Delta\left(\frac{B+A}{2}, B, \frac{B+C}{2}\right), & d=2 \\ \Delta\left(\frac{C+A}{2}, \frac{C+B}{2}, C\right), & d=3 .\end{cases}
$$

- This construction defines an infinite sequence of $f_{T}(i) \in T$ for integers $i \geqslant 0$.
- For an n point rule, take $\boldsymbol{x}_{i}=f_{T}(i-1)$ for $i=1, \ldots, n$.

Discrepancy Results

Theorem 1

For an integer $k \geqslant 0$ and non-degenerate triangle $\Omega=\Delta(A, B, C)$, let \mathcal{P} consist of $\boldsymbol{x}_{i}=f_{\Omega}(i-1)$ for $i=1, \ldots, N=4^{k}$. Then

$$
D_{N}^{P}(\mathcal{P} ; \Omega)= \begin{cases}\frac{7}{9}, & N=1 \\ \frac{2}{3 \sqrt{N}}-\frac{1}{9 N}, & \text { else. }\end{cases}
$$

Discrepancy Results

Theorem 2

Let Ω be a nondegenerate triangle, and let \mathcal{P} contain points $\boldsymbol{x}_{i}=f_{\Omega}(s+i-1), i=1, \ldots, N=4^{k}$, for a starting integer $s \geqslant 1$ and an integer $k \geqslant 0$. Then

$$
D_{N}^{P}(\mathcal{P} ; \Omega) \leq \frac{2}{\sqrt{N}}-\frac{1}{N}
$$

Proof of Theorem 2

Proof

- $\delta_{N}(S)=\sum_{j=0}^{m} \delta_{N}\left(S_{j}\right)$ where m is the number of subtriangles touching a boundary line of $\mathcal{T}_{a, b, c}$.
- $-1 / N \leqslant \delta_{N}\left(S_{j}\right) \leqslant 1 / N$.
- $D_{N}(S ; \mathcal{P}) \leqslant m / N$
- $m \leqslant 2 \sqrt{N}-1$
- $D_{N}\left(\mathcal{S}_{C} ; \mathcal{P}\right) \leqslant(2 \sqrt{N}-1) / N$

Discrepancy Results

Theorem 3

Let Ω be a non-degenerate triangle and, for integer $N \geqslant 1$, let $\mathcal{P}=\left(x_{1}, \ldots, x_{N}\right)$, where $\boldsymbol{x}_{i}=f_{\Omega}(i-1)$. Then

$$
D_{N}^{P}(\mathcal{P} ; \Omega) \leqslant 12 / \sqrt{N} .
$$

Proof:

- Let $N=\sum_{j=0}^{k} a_{j} 4^{j}$ for some k, with $a_{k} \neq 0$.
- Let \mathcal{P}_{j}^{\prime} denote a set of 4^{j} consecutive points from \mathcal{P}, for $I=1, \ldots, a_{j}$ and $j \leqslant k$. These \mathcal{P}_{j}^{\prime} can be chosen to partition the N points \boldsymbol{x}_{i}. Fix any $S \in \mathcal{S}_{P}$.

Proof of Theorem 3

- Now,

$$
\delta_{N}(S ; \mathcal{P})=\frac{1}{N} \sum_{j=0}^{k} \sum_{l=1}^{a_{j}} 4^{j} \delta\left(S ; \mathcal{P}_{j}^{\prime}\right)
$$

- Therefore from Theorem 2,

$$
\begin{aligned}
D_{N}(S ; \mathcal{P}) & =\left|\delta_{N}(S ; \mathcal{P})\right| \leqslant \frac{1}{N} \sum_{j=0}^{k} \sum_{l=1}^{a_{j}} 4^{j}\left(\frac{2}{2^{j}}-\frac{1}{4^{j}}\right) \leqslant \frac{1}{N} \sum_{j=0}^{k} a_{j}\left(2^{j+1}-1\right) \\
& \leqslant \frac{3}{N}\left(2\left(2^{k+1}-1\right)-(k+1)\right) \leqslant \frac{12 \times 2^{k}}{N}
\end{aligned}
$$

and then $k \leqslant \log _{4}(N)$, gives $D_{N}(S ; \mathcal{P}) \leqslant 12 / \sqrt{N}$.

- Taking the supremum over $S \in \mathcal{S}_{P}$ yields the result.

Triangular Kronecker Lattice

- We use Theorem 1 of Chen and Travaglini (2007)
- This construction yields parallel discrepancy of $O(\log N / N)$

Definition 1

A real number θ is said to be badly approximable if there exists a constant $c>0$ such that $n\|n \theta\|>c$ for every natural number $n \in \mathbb{N}$ and $\|\cdot\|$ denotes the distance from the nearest integer.

Definition 2

Let a, b, c and d be integers with $b \neq 0, d \neq 0$ and $c>0$, where c is not a perfect square. Then $\theta=(a+b \sqrt{c}) / d$ is a quadratic irrational number.

Triangular Kronecker Lattice

- Let $\Theta=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ be a set of $k \geqslant 1$ angles in $[0,2 \pi)$.
- Then let $\mathcal{A}(\Theta)$ be the set of convex polygonal subsets of $[0,1]^{2}$ whose sides make an angle of θ_{i} with respect to the horizontal axis.

Theorem 1 (Chen and Travaglini (2007))

There exists a constant $C_{\Theta}<\infty$ such that for any integer $N>1$ there exists a list $\mathcal{P}=\left(x_{1}, \ldots, x_{N}\right)$ of points in $[0,1]^{2}$ with

$$
D_{N}\left(\mathcal{A}(\Theta) ; \mathcal{P},[0,1]^{2}\right)<C_{\Theta} \log (N) / N
$$

Triangular Kronecker Lattice

Lemma 2 (Davenport)

Suppose that the angles $\theta_{1}, \ldots, \theta_{k} \in[0,2 \pi)$ are fixed. Then there exists $\alpha \in[0,2 \pi)$ such that $\tan (\alpha), \tan (\alpha-\pi / 2), \tan \left(\alpha-\theta_{1}\right), \ldots$ $\tan \left(\alpha-\theta_{k}\right)$ are all finite and badly approximable.

Triangular Kronecker Lattice

Figure: Set of Angles for Kronecker Construction $(0,1)$

- $R=\Delta\left((0,0)^{\top},(0,1)^{\top},(1,0)^{\top}\right)$.
- $\Theta=\{0, \pi / 2,3 \pi / 4\}$

Triangular Kronecker Lattice

Lemma 3

Let α be an angle for which $\tan (\alpha)$ is a quadratic irrational number. Then $\tan (\alpha), \tan (\alpha-\pi / 2)$ and $\tan (\alpha-3 \pi / 4)$ are all finite and badly approximable.

- $\tan (3 \pi / 8)=1+\sqrt{2}$.
- $\tan (5 \pi / 8)=-1-\sqrt{2}$.

Triangular Kronecker Lattice

Theorem 4

Let $N>1$ be an integer and let R defined above be the triangle. Let $\alpha \in(0,2 \pi)$ be an angle for which $\tan (\alpha)$ is a quadratic irrational. Let \mathcal{P}_{1} be the points of the lattice $(2 N)^{-1 / 2} \mathbb{Z}^{2}$ rotated anticlockwise by angle α. Let \mathcal{P}_{2} be the points of \mathcal{P}_{1} that lie in R. If \mathcal{P}_{2} has more than N points, let \mathcal{P}_{3} be any N points from \mathcal{P}_{2}, or if \mathcal{P}_{2} has fewer than N points, let \mathcal{P}_{3} be a list of N points in R including all those of \mathcal{P}_{2}. Then there is a constant C with

$$
D^{P}\left(\mathcal{P}_{3} ; R\right)<C \log (N) / N
$$

Triangular Kronecker Lattice

Triangular Lattice Points

Figure: Triangular lattice points for target $N=64$. Domain is an equilateral triangle. Angles $3 \pi / 8$ and $5 \pi / 8$ have badly approximable tangents. Angles $\pi / 4$ and $\pi / 2$ have integer and infinite tangents respectively and do not satisfy the conditions for discrepancy $O(\log (N) / N)$.

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}
- Rotate anti clockwise by α

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}
- Rotate anti clockwise by α
- Shrink by $\sqrt{2 N}$

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}
- Rotate anti clockwise by α
- Shrink by $\sqrt{2 N}$
- Remove points not in the triangle.

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}
- Rotate anti clockwise by α
- Shrink by $\sqrt{2 N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly N points

Construction Algorithm

Given a target sample size N, an angle α such as $3 \pi / 8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

- Take integer grid \mathbb{Z}^{2}
- Rotate anti clockwise by α
- Shrink by $\sqrt{2 N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly N points

- Linearly map R onto the desired triangle $\Delta(A, B, C)$

Triangular Kronecker Lattice

Parallel discrepancy of triangular lattice points for angle $\alpha=3 \pi / 8$ and various targets N. The number of points was always N or $N+1$. The dashed reference line is $1 / N$. The solid line is $\log (N) / N$.

Conclusion

- The Kronecker construction attains a lower discrepancy than the van der Corput construction.
- van der Corput construction is extensible and the digits in it can be randomized.
- If f is continuously differentiable, then for $N=4^{k}$, the randomization in Owen (1995) will give root mean square error $O(1 / N)$

Future Work

- Generalization to higher dimensional simplex.
- Construction in tensor product spaces.

Thank you. Questions?

