Low-discrepancy constructions in the triangle

Kinjal Basu

Department of Statistics Stanford University

Joint work with Art B. Owen.

ICERM 29th October 2014

< 一型

-

Overview

- The Problem
- Motivation

2 Background

Discrepancy

3 Construction

- Triangular van der Corput points
- Discrepancy of triangular van der Corput points
- Triangular Kronecker Lattice

Conclusion

Introduction

Introduction Background Construction Conclusion

The Problem Motivation

- Problem : Numerical Integration over triangular domain using quasi-Monte Carlo (QMC) sampling.
- QMC in $[0,1]^d$.

$$\mu = \int_{[0,1]^d} f(x) dx$$
 $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(x_i)$

• Koksma-Hlawka inequality

$$|\hat{\mu}_n - \mu| \leq D_n^*(x_1, \ldots, x_n) \times V_{HK}(f)$$

• Recent work relating to general spaces by Aistleitner et al., (2012), Brandolini et. al (2013)

Introduction Background Construction

The Problem Motivation

Motivation

- Need in computer graphics, genetic experimental studies, etc.
- Mapping by special functions/transformation from [0, 1]^d
 Pillards and Cools (2005).
- Several notions of discrepancy on the triangle/simplex but no explicit constructions. Pillards and Cools (2005), Brandolini et. al (2013).

Discrepancy

General Notions of Discrepancy

• The signed discrepancy of $\mathcal P$ at the measurable set $S\subseteq \Omega\subset \mathbb R^d$ is

$$\delta_N(S;\mathcal{P},\Omega) = \operatorname{vol}(S\cap\Omega)/\operatorname{vol}(\Omega) - A_N(S;\mathcal{P})/N.$$

 The absolute discrepancy of points *P* for a class *S* of measurable subsets of Ω is

$$D_N(\mathcal{S}; \mathcal{P}, \Omega) = \sup_{S \in \mathcal{S}} D_N(S; \mathcal{P}, \Omega),$$

where

$$D_N(S; \mathcal{P}, \Omega) = |\delta_N(S; \mathcal{P}, \Omega)|.$$

• Standard QMC works with $\Omega = [0,1)^d$ and takes for S the set of anchored boxes $[0, \mathbf{a})$ with $\mathbf{a} \in [0,1)^d$.

Discrepancy

Discrepancy due to Brandolini et al. (2013)

•
$$S_C = \{ \mathcal{T}_{a,b,C} \mid 0 < a < \|A - C\|, 0 < b < \|B - C\| \}$$

 The parallelogram discrepancy of points *P* for Ω = Δ(A, B, C) is

$$D_N^P(\mathcal{P};\Omega) = D_N(\mathcal{S}_P;\mathcal{P},\Omega)$$

for

$$\mathcal{S}_P = \mathcal{S}_A \cup \mathcal{S}_B \cup \mathcal{S}_C.$$

Figure: The construction of the parallelogram $T_{a,b,C} = CDFE$

Discrepancy

Discrepancy due to Pillards and Cools (2005)

•
$$\Omega = \Delta((0,0)^{\mathsf{T}},(0,1)^{\mathsf{T}},(1,1)^{\mathsf{T}})$$

• Their discrepancy

$$D_N^{PC}(\mathcal{P};\Omega) = D_N(\mathcal{S}_I,\mathcal{P},\Omega)$$

where

$$S_I = \{[0, a) \mid a \in [0, 1)^2\}.$$

Figure: Star Discrepancy on the Simplex

Discrepancy

Relationship between the discrepancies

Lemma 1

Let T_{PC} be the triangle from Pillards and Cools and for $N \ge 1$, let \mathcal{P} be the list of points $\mathbf{x}_1, \ldots, \mathbf{x}_N \in T_{PC}$. Then

$$D_N^{PC}(\mathcal{P}, T_{PC}) \leqslant 2 D_N^P(\mathcal{P}, T_{PC})$$

Proof

- $[0, a_1) \times [0, a_2) = [0, a_1) \times [0, 1) [0, a_1) \times [a_2, 1)$
- Taking C to be the vertex $(0,1)^{\mathsf{T}}$ of T_{PC} ,
- $D_N^{PC}(\mathcal{P}; T_{PC}) \leq 2D_N(\mathcal{S}_C, \mathcal{P}, T_{PC}) \leq 2D_N^P(\mathcal{P}, T_{PC}).$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular van der Corput construction

- van der Corput sampling of [0, 1] the integer $n = \sum_{k \ge 1} d_k b^{k-1}$ in base $b \ge 2$ is mapped to $x_n = \sum_{k \ge 1} d_k b^{-k}$.
- Points $x_1, \ldots, x_n \in [0, 1)$ have a discrepancy of $O(\log(n)/n)$.
- Our situation : 4-ary expansion.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular van der Corput construction

• $n \ge 0$ in a base 4 representation $n = \sum_{k \ge 1} d_k 4^{k-1}$ where $d_k \in \{0, 1, 2, 3\}$

Figure: A labeled subdivision of $\Delta(A, B, C)$ into 4 and then 16 congruent subtriangles. Next are the first 32 triangular van der Corput points followed by the first 64. The integer labels come from the base 4 expansion.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular van der Corput construction

• Computation : $T = \Delta(A, B, C)$

$$T(d) = \begin{cases} \Delta(\frac{B+C}{2}, \frac{A+C}{2}, \frac{A+B}{2}), & d = 0\\ \Delta(A, \frac{A+B}{2}, \frac{A+C}{2}), & d = 1\\ \Delta(\frac{B+A}{2}, B, \frac{B+C}{2}), & d = 2\\ \Delta(\frac{C+A}{2}, \frac{C+B}{2}, C), & d = 3. \end{cases}$$

- This construction defines an infinite sequence of f_T(i) ∈ T for integers i ≥ 0.
- For an *n* point rule, take $\mathbf{x}_i = f_T(i-1)$ for i = 1, ..., n.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

(日)

Discrepancy Results

Theorem 1

For an integer $k \ge 0$ and non-degenerate triangle $\Omega = \Delta(A, B, C)$, let \mathcal{P} consist of $\mathbf{x}_i = f_{\Omega}(i-1)$ for $i = 1, ..., N = 4^k$. Then

$$D^P_N(\mathcal{P};\Omega) = egin{cases} rac{7}{9}, & \mathcal{N}=1\ rac{2}{3\sqrt{\mathcal{N}}}-rac{1}{9\mathcal{N}}, & ext{else.} \end{cases}$$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

<ロト < 同ト < 三ト

Discrepancy Results

Theorem 2

Let Ω be a nondegenerate triangle, and let \mathcal{P} contain points $\mathbf{x}_i = f_{\Omega}(s+i-1), i = 1, ..., N = 4^k$, for a starting integer $s \ge 1$ and an integer $k \ge 0$. Then

$$D_N^P(\mathcal{P};\Omega) \leq rac{2}{\sqrt{N}} - rac{1}{N}.$$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Proof of Theorem 2

Proof

- $\delta_N(S) = \sum_{j=0}^m \delta_N(S_j)$ where *m* is the number of subtriangles touching a boundary line of $\mathcal{T}_{a,b,C}$.
- $-1/N \leq \delta_N(S_j) \leq 1/N$.
- $D_N(S; \mathcal{P}) \leq m/N$
- $m \leq 2\sqrt{N} 1$

•
$$D_N(\mathcal{S}_C; \mathcal{P}) \leqslant (2\sqrt{N}-1)/N$$

(日)

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

(日) (同) (三) (三)

Discrepancy Results

Theorem 3

Let Ω be a non-degenerate triangle and, for integer $N \ge 1$, let $\mathcal{P} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, where $\mathbf{x}_i = f_{\Omega}(i-1)$. Then

$$D_N^P(\mathcal{P};\Omega) \leqslant 12/\sqrt{N}.$$

Proof:

- Let $N = \sum_{j=0}^{k} a_j 4^j$ for some k, with $a_k \neq 0$.
- Let P^l_j denote a set of 4^j consecutive points from P, for
 I = 1,..., a_j and j ≤ k. These P^l_j can be chosen to partition
 the N points x_i. Fix any S ∈ S_P.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Proof of Theorem 3

• Now,

$$\delta_N(S; \mathcal{P}) = \frac{1}{N} \sum_{j=0}^k \sum_{l=1}^{a_j} 4^j \delta(S; \mathcal{P}_j^l).$$

• Therefore from Theorem 2,

$$egin{aligned} D_{\mathcal{N}}(S;\mathcal{P}) &= |\delta_{\mathcal{N}}(S;\mathcal{P})| \leqslant rac{1}{\mathcal{N}} \sum_{j=0}^{k} \sum_{l=1}^{a_{j}} 4^{j} \Big(rac{2}{2^{j}} - rac{1}{4^{j}}\Big) \leqslant rac{1}{\mathcal{N}} \sum_{j=0}^{k} a_{j} (2^{j+1} - 1) \ &\leqslant rac{3}{\mathcal{N}} ig(2(2^{k+1} - 1) - (k+1)ig) \leqslant rac{12 imes 2^{k}}{\mathcal{N}} \end{aligned}$$

and then $k \leq \log_4(N)$, gives $D_N(S; \mathcal{P}) \leq 12/\sqrt{N}$.

• Taking the supremum over $S \in \mathcal{S}_P$ yields the result.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular Kronecker Lattice

- We use Theorem 1 of Chen and Travaglini (2007)
- This construction yields parallel discrepancy of $O(\log N/N)$

Definition 1

A real number θ is said to be *badly approximable* if there exists a constant c > 0 such that $n||n\theta|| > c$ for every natural number $n \in \mathbb{N}$ and $|| \cdot ||$ denotes the distance from the nearest integer.

Definition 2

Let a, b, c and d be integers with $b \neq 0$, $d \neq 0$ and c > 0, where c is not a perfect square. Then $\theta = (a + b\sqrt{c})/d$ is a quadratic irrational number.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

< ロ > < 同 > < 回 > < 回 >

Triangular Kronecker Lattice

- Let $\Theta = \{\theta_1, \dots, \theta_k\}$ be a set of $k \ge 1$ angles in $[0, 2\pi)$.
- Then let A(Θ) be the set of convex polygonal subsets of [0,1]² whose sides make an angle of θ_i with respect to the horizontal axis.

Theorem 1 (Chen and Travaglini (2007))

There exists a constant $C_{\Theta} < \infty$ such that for any integer N > 1there exists a list $\mathcal{P} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ of points in $[0, 1]^2$ with

$$D_N(\mathcal{A}(\Theta); \mathcal{P}, [0,1]^2) < C_\Theta \log(N)/N.$$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

▲ @ ▶ < ≡ ▶</p>

Triangular Kronecker Lattice

Lemma 2 (Davenport)

Suppose that the angles $\theta_1, \ldots, \theta_k \in [0, 2\pi)$ are fixed. Then there exists $\alpha \in [0, 2\pi)$ such that $\tan(\alpha), \tan(\alpha - \pi/2), \tan(\alpha - \theta_1), \ldots$ $\tan(\alpha - \theta_k)$ are all finite and badly approximable.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular Kronecker Lattice

•
$$R = \Delta((0,0)^{\mathsf{T}}, (0,1)^{\mathsf{T}}, (1,0)^{\mathsf{T}})$$

• $\Theta = \{0, \pi/2, 3\pi/4\}$

Figure: Set of Angles for Kronecker Construction

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

< ロ > < 同 > < 三 > <

Triangular Kronecker Lattice

Lemma 3

Let α be an angle for which $\tan(\alpha)$ is a quadratic irrational number. Then $\tan(\alpha)$, $\tan(\alpha - \pi/2)$ and $\tan(\alpha - 3\pi/4)$ are all finite and badly approximable.

•
$$\tan(3\pi/8) = 1 + \sqrt{2}$$
.

• tan
$$(5\pi/8) = -1 - \sqrt{2}$$
.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

・ロト ・同ト ・ヨト ・

Triangular Kronecker Lattice

Theorem 4

Let N > 1 be an integer and let R defined above be the triangle. Let $\alpha \in (0, 2\pi)$ be an angle for which $\tan(\alpha)$ is a quadratic irrational. Let \mathcal{P}_1 be the points of the lattice $(2N)^{-1/2}\mathbb{Z}^2$ rotated anticlockwise by angle α . Let \mathcal{P}_2 be the points of \mathcal{P}_1 that lie in R. If \mathcal{P}_2 has more than N points, let \mathcal{P}_3 be any N points from \mathcal{P}_2 , or if \mathcal{P}_2 has fewer than N points, let \mathcal{P}_3 be a list of N points in R including all those of \mathcal{P}_2 . Then there is a constant C with

 $D^P(\mathcal{P}_3; R) < C \log(N)/N.$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular Kronecker Lattice

Figure: Triangular lattice points for target N = 64. Domain is an equilateral triangle. Angles $3\pi/8$ and $5\pi/8$ have badly approximable tangents. Angles $\pi/4$ and $\pi/2$ have integer and infinite tangents respectively and do not satisfy the conditions for discrepancy $O(\log(N)/N)$.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

Given a target sample size N, an angle α such as $3\pi/8$ satisfying Lemma 3. and a target triangle $\Delta(A, B, C)$,

• Take integer grid \mathbb{Z}^2

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

- Take integer grid \mathbb{Z}^2
- Rotate anti clockwise by α

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

- \bullet Take integer grid \mathbb{Z}^2
- Rotate anti clockwise by α
- Shrink by $\sqrt{2N}$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

- \bullet Take integer grid \mathbb{Z}^2
- Rotate anti clockwise by $\boldsymbol{\alpha}$
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

- \bullet Take integer grid \mathbb{Z}^2
- Rotate anti clockwise by α
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly N points

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Construction Algorithm

- $\bullet\,$ Take integer grid \mathbb{Z}^2
- Rotate anti clockwise by $\boldsymbol{\alpha}$
- Shrink by $\sqrt{2N}$
- Remove points not in the triangle.
- (Optionally) add/subtract points to get exactly *N* points
- Linearly map R onto the desired triangle $\Delta(A, B, C)$

Triangular van der Corput points Discrepancy of triangular van der Corput points Triangular Kronecker Lattice

Triangular Kronecker Lattice

Parallel discrepancy of triangular lattice points for angle $\alpha = 3\pi/8$ and various targets *N*. The number of points was always *N* or *N* + 1. The dashed reference line is 1/N. The solid line is $\log(N)/N$.

Grid rotated by 3pi/8 radians

Conclusion

- The Kronecker construction attains a lower discrepancy than the van der Corput construction.
- van der Corput construction is extensible and the digits in it can be randomized.
- If f is continuously differentiable, then for $N = 4^k$, the randomization in Owen (1995) will give root mean square error O(1/N)

Future Work

- Generalization to higher dimensional simplex.
- Construction in tensor product spaces.

Thank you. Questions?

Kinjal Basu Low-discrepancy in Triangle

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э