Variance Lower Bound and Asymptotic Normality of Scrambled Geometric Nets

Kinjal Basu

Relevance Sciences, LinkedIn

Joint work with Rajarshi Mukherjee

15th August, 2016
Overview

1. Introduction

2. Scrambled Geometric Nets

3. Lower Bound on Variance

4. Asymptotic Normality
The Problem

- Numerical integration
- Domain of interest: \(\mathcal{X}^s = \prod_{j=1}^s \mathcal{X}^{(j)} \), where each \(\mathcal{X}^{(j)} \subset \mathbb{R}^d \).
The Problem

- Numerical integration
- Domain of interest: \(\mathcal{X}^s = \prod_{j=1}^{s} \mathcal{X}^{(j)} \), where each \(\mathcal{X}^{(j)} \subset \mathbb{R}^d \).
- To estimate

\[
\mu = \frac{1}{\text{vol}(\mathcal{X}^s)} \int_{\mathcal{X}^s} f(x) dx
\]
The Problem

- Numerical integration
- Domain of interest: \(\mathcal{X}^s = \prod_{j=1}^{s} \mathcal{X}^{(j)} \), where each \(\mathcal{X}^{(j)} \subseteq \mathbb{R}^d \).
- To estimate

\[
\mu = \frac{1}{\text{vol}(\mathcal{X}^s)} \int_{\mathcal{X}^s} f(x) \, dx
\]

by an equal weight rule

\[
\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i),
\]

where \(x_i \) are the points generated by QMC or RQMC methods.
Motivation

Need to construct a confidence interval.

Asymptotic Distribution.

Matching lower bound for the variance.
Motivation

- Need to construct a confidence interval.
Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.
Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.
Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.
- Matching lower bound for the variance.
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1]^s$.
- Introduce randomization via Scrambling Algorithm to get $u \in [0, 1]^s$.
- Apply a mapping ϕ such that $x_i = \phi(u_i) \in X$ (Scrambled geometric net).
- Equal weight rule $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.

Most interesting case: triangles, spherical triangles and discs.
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1)^s$.

Introduce randomization via Scrambling Algorithm to get $u_i \in [0, 1)^s$.

Apply a mapping ϕ such that $x_i = \phi(u_i) \in X^s$ (Scrambled geometric net)

Equal weight rule

$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$

Most interesting case: triangles, spherical triangles and discs.
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1)^s$.
- Introduce randomization via Scrambling Algorithm to get $u_i \in [0, 1)^s$.

Most interesting case: triangles, spherical triangles and discs.
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1)^s$.
- Introduce randomization via Scrambling Algorithm to get $u_i \in [0, 1)^s$.
- Apply a mapping ϕ such that

$$x_i = \phi(u_i) \in \mathcal{X}^s$$

(Scrambled geometric net)
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1)^s$.
- Introduce randomization via Scrambling Algorithm to get $u_i \in [0, 1)^s$.
- Apply a mapping ϕ such that
 \[
 x_i = \phi(u_i) \in \mathcal{X}^s
 \]
 (Scrambled geometric net)
- Equal weight rule
 \[
 \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i)
 \]
Our Strategy for Non-Cubical Space \mathcal{X}^s

- Start with a (t, m, s)-net in base b in $[0, 1)^s$.
- Introduce randomization via Scrambling Algorithm to get $u_i \in [0, 1)^s$.
- Apply a mapping ϕ such that

$$x_i = \phi(u_i) \in \mathcal{X}^s$$

(Scrambled geometric net)
- Equal weight rule

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

- Most interesting case: triangles, spherical triangles and discs.
Previous Results

Lemma 1 (B. and Owen (2015b))

\(\hat{\mu}_n \) is unbiased for \(\mu \).
Previous Results

Lemma 1 (B. and Owen (2015b))
\[\hat{\mu}_n \] is unbiased for \(\mu \).

Theorem 1 (B. and Owen (2015b))
There exists a constant \(C > 0 \) such that
\[
\text{Var}(\hat{\mu}_n) \leq C \frac{(\log n)^{s-1}}{n^{1+2/d}},
\]
under certain smoothness conditions on \(f \) and a sphericity constraint on the partitioning of \(\mathcal{X}^s \).
Main Results

Point set is a scrambled \((0, m, s)\) geometric net in base \(b\).

Theorem 2. (B. and Mukherjee (2016))
If \(f \in F_s\) and the partitioning of \(X_s\) satisfies an eigenvalue condition, then there exists a positive constant \(c\) such that
\[
\text{Var}(\hat{\mu}_n) \geq c \left(\log n \right)^{s-1} n^{1/2} + 2/d.
\]

(2)

Define,
\[
W = \hat{\mu}_n - \mu / \sqrt{\text{Var}(\hat{\mu}_n)}.
\]

Theorem 3. (B. and Mukherjee (2016))
Let \(b \geq \max(s, d, 2)\), \(f \in F_s\) and if (2) holds, then
\(W \to N(0, 1)\) in distribution as \(n \to \infty\).
Main Results

- Point set is a scrambled $(0, m, s)$ geometric net in base b.

(continued on next page)
Main Results

- Point set is a scrambled \((0, m, s)\) geometric net in base \(b\).

Theorem 2. (B. and Mukherjee (2016))

If \(f \in \mathcal{F}_s\) and the partitioning of \(\mathcal{X}^s\) satisfies an eigenvalue condition, then there exists a positive constant \(c\) such that

\[
\text{Var}(\hat{\mu}_n) \geq c \frac{(\log n)^{s-1}}{n^{1+2/d}}.
\]

\(2\)
Main Results

- Point set is a scrambled \((0, m, s)\) geometric net in base \(b\).

Theorem 2. (B. and Mukherjee (2016))

If \(f \in \mathcal{F}_s\) and the partitioning of \(X^s\) satisfies an eigenvalue condition, then there exists a positive constant \(c\) such that

\[
\text{Var}(\hat{\mu}_n) \geq c \frac{(\log n)^{s-1}}{n^{1+2/d}}. \tag{2}
\]

- Define,

\[
W = \frac{\hat{\mu}_n - \mu}{\sqrt{\text{Var}(\hat{\mu}_n)}}.
\]
Main Results

- Point set is a scrambled \((0, m, s)\) geometric net in base \(b\).

Theorem 2. (B. and Mukherjee (2016))

If \(f \in \mathcal{F}_s\) and the partitioning of \(X^s\) satisfies an eigenvalue condition, then there exists a positive constant \(c\) such that

\[\text{Var}(\hat{\mu}_n) \geq c \frac{(\log n)^{s-1}}{n^{1+2/d}}. \]

Define,

\[W = \frac{\hat{\mu}_n - \mu}{\sqrt{\text{Var}(\hat{\mu}_n)}}. \]

Theorem 3. (B. and Mukherjee (2016))

Let \(b \geq \max(s, d, 2)\), \(f \in \mathcal{F}_s\) and if (2) holds, then \(W \to \mathcal{N}(0, 1)\) in distribution as \(n \to \infty\).
Overview

1. Introduction

2. Scrambled Geometric Nets

3. Lower Bound on Variance

4. Asymptotic Normality
Scrambled Geometric Nets - A simpler construction

Set of \(n = b^m \) points on the domain \(X \).

Fix a equal volume recursive partition in base \(b \) of the domain.

Put a point \(x_i \) uniformly at random within a cell of volume \(\frac{1}{b^m} \).

For example on \(T^2 \) using base \(b = 4, \)
Scrambled Geometric Nets - A simpler construction

- Set of $n = b^m$ points on the domain \mathcal{X}^s.
Scrambled Geometric Nets - A simpler construction

- Set of $n = b^m$ points on the domain \mathcal{X}^s.
- Fix a equal volume recursive partition in base b of the domain.
Scrambled Geometric Nets - A simpler construction

- Set of $n = b^m$ points on the domain \mathcal{X}^s.
- Fix a equal volume recursive partition in base b of the domain.
- Put a point x_i uniformly at random within a cell of volume $1/b^m$.
Scrambled Geometric Nets - A simpler construction

- Set of $n = b^m$ points on the domain \mathcal{X}^s.
- Fix a equal volume recursive partition in base b of the domain.
- Put a point x_i uniformly at random within a cell of volume $1/b^m$.
- For example on T^2 using base $b = 4$,
Splits on the Triangle

Figure: Splits of a triangle \mathcal{X} for bases $b = 2, 3$ and 4. The subtriangles \mathcal{X}_j are labeled by the digit $j \in \mathbb{Z}_b$.
Recursive Splits on the Triangle

Figure: The base b splits from previous figure carried out to $k = 6$ or 3 or 4 levels.
Splitting on the Disc

Figure: A recursive binary equal area splitting of the unit disk, keeping the aspect ratio close to unity.
Overview

1. Introduction

2. Scrambled Geometric Nets

3. Lower Bound on Variance

4. Asymptotic Normality
Form of Variance

- Using Multiresolution Analysis of $L^2(\mathcal{X}^s)$,

\[
\text{Var}(\hat{\mu}_n) = \mathbb{E} \left(\left[\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \mu) \right]^2 \right) \\
= \frac{1}{n} \sum_{|u|>0} \sum_{\kappa|u} \Gamma_{u,\kappa} \sigma_{u,\kappa}^2.
\]
Form of Variance

- Using Multiresolution Analysis of $L^2(\mathcal{X}^s)$,

$$\text{Var}(\hat{\mu}_n) = \mathbb{E} \left(\left[\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \mu) \right]^2 \right)$$

$$= \frac{1}{n} \sum_{|u|>0} \sum_{\kappa|u} \Gamma_{u,\kappa} \sigma^2_{u,\kappa}.$$

where

$$\sigma^2_{u,\kappa} = \sum_{\tau} \sum_{\gamma,\gamma'} \langle f, \psi_{u\kappa\tau\gamma} \rangle \langle f, \psi_{u\kappa\tau\gamma'} \rangle \prod_{j \in u} \left(1_{c_j = c'_j} - \frac{1}{b} \right).$$
Main Theorem on Lower Bound

Theorem 2: B. and Mukherjee (2016)

If \(f \in \mathcal{F}_s \) and an eigenvalue condition holds for the partitioning of the domain, then there exists a positive constant \(c \) such that

\[
\text{Var}(\hat{\mu}_n) \geq c \frac{(\log n)^{s-1}}{n^{1+2/d}},
\]

for all sufficiently large \(n \).
Smooth class of functions \mathcal{F}_s

Definition

A real-valued function f on X is smooth if for all $u \subseteq s$,

$$\|\nabla u f(x) - \nabla u f(x^*)\| \leq B \|x - x^*\|^\beta$$

for some finite $B \geq 0$ and $\beta \in (0, 1]$ for all $x, x^* \in X$.

Definition

Define \mathcal{F}_s as the class of all smooth functions f on X such that for all $u \subseteq s$,

$$\|\int_X \nabla u f(x) \, dx\|^2 > 0.$$
Smooth class of functions \mathcal{F}_s

Definition

A real-valued function f on \mathcal{X}^s is smooth if for all $u \subseteq s$,

$$
\|\nabla^u f(x) - \nabla^u f(x^*)\| \leq B \|x - x^*\|^\beta
$$

for some finite $B \geq 0$ and $\beta \in (0, 1]$ for all $x, x^* \in \mathcal{X}^s$.
Smooth class of functions \mathcal{F}_s

Definition

A real-valued function f on \mathcal{X}^s is smooth if for all $u \subseteq s$,

$$\|\nabla^u f(x) - \nabla^u f(x^*)\| \leq B \|x - x^*\|^\beta$$

for some finite $B \geq 0$ and $\beta \in (0, 1]$ for all $x, x^* \in \mathcal{X}^s$.

Definition

Define \mathcal{F}_s as the class of all smooth functions f on \mathcal{X}^s such that for all $u \subseteq s$,

$$\left\| \int_{\mathcal{X}^s} \nabla^u f(x) \, dx \right\|^2 > 0.$$
Remember that,\[
\sigma^2_u, \kappa = \sum_{\tau} \sum_{\gamma, \gamma'} \langle f, \psi_{u, \kappa \tau \gamma} \rangle \langle f, \psi_{u, \kappa \tau \gamma'} \rangle \prod_{j \in u} (c_j = c_j' - 1 b_j).
\]
Eigenvalue Condition

Remember that,

$$\sigma_{u,\kappa}^2 = \sum_{\tau} \sum_{\gamma,\gamma'} \langle f, \psi_{u\kappa\tau\gamma} \rangle \langle f, \psi_{u\kappa\tau\gamma'} \rangle \prod_{j \in u} \left(1_{c_j = c_j'} - \frac{1}{b} \right).$$
Define, \(A(k, t) = b - \sum_{c=0}^{\infty} (n_c - w)(n_c - w) \) for some \(\tilde{c} > 0 \).
Define,

\[A^{(k,t)} = \sum_{c=0}^{b-1} (n_c - w)(n_c - w)^T \]
Define,

\[A^{(k,t)} = \sum_{c=0}^{b-1} (n_c - w)(n_c - w)^T \]

\[\lambda_1 (A^{(k,t)}) \geq \tilde{c} b^{-2k/d} \text{ for some } \tilde{c} > 0. \]
Some Examples
Some Examples

Using the above subdivision, $A(k,t) = b - k\left[2 - \frac{1}{2} - \frac{1}{2}\right]$

Thus, $\lambda_1(A(k,t)) = b - k/6$

If $X = [0,1]$, then $A(k,t) = b - 2k(b^2 - 1)(b^2 - 12)$.
Some Examples

Using the above subdivision,

\[A^{(k, t)} = \frac{b^{-k}}{6} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \]
Some Examples

Using the above subdivision,

\[A^{(k,t)} = \frac{b^{-k}}{6} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \]

Thus, \[\lambda_1 (A^{(k,t)}) = b^{-k} / 6 \]
Using the above subdivision,

\[A^{(k,t)} = \frac{b^{-k}}{6} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \]

Thus, \(\lambda_1 (A^{(k,t)}) = b^{-k}/6 \)

If \(\mathcal{X} = [0, 1] \), then \(A^{(k,t)} = b^{-2k} \left(\frac{b^2-1}{12b} \right) \).
$f(x, y) = x_1 x_2^2 - y_1^3 y_2^4$ on $T^2 \times T^2$
Overview

1. Introduction
2. Scrambled Geometric Nets
3. Lower Bound on Variance
4. Asymptotic Normality
Example continued

![Graph showing density plots for different m values and comparison with True N(0,1)]
Normal Q-Q Plots

\(m = 6 \)

\[\begin{align*}
\text{Theoretical Quantiles} & \quad \text{Sample Quantiles} \\
\end{align*} \]

\(m = 7 \)

\[\begin{align*}
\text{Theoretical Quantiles} & \quad \text{Sample Quantiles} \\
\end{align*} \]

\(m = 8 \)

\[\begin{align*}
\text{Theoretical Quantiles} & \quad \text{Sample Quantiles} \\
\end{align*} \]

\(m = 9 \)

\[\begin{align*}
\text{Theoretical Quantiles} & \quad \text{Sample Quantiles} \\
\end{align*} \]
Proof technique of Asymptotic Normality

\[W = \frac{\hat{\mu}_n - \mu}{\sqrt{\text{Var}(\hat{\mu}_n)}} \]

Create a \(\tilde{W} \) satisfying

\[W - \tilde{W} = o_p(1) \]

Create an exchangeable pair \((\tilde{W}, \tilde{W}^*)\)

Based on Exchangeable Pair technique of Stein's Method, show that \(\tilde{W} \to N(0,1) \) in distribution as \(m \to \infty \).

Use Slutsky's Theorem.
Proof technique of Asymptotic Normality

\[W = \frac{\hat{\mu}_n - \mu}{\sqrt{\text{Var}(\hat{\mu}_n)}} \]

Create a \(\tilde{W} \) satisfying \(W - \tilde{W} = o_p(1) \).

Create an exchangeable pair \((\tilde{W}, \tilde{W}^*) \).

Based on Exchangeable Pair technique of Stein's Method, show that \(\tilde{W} \to N(0, 1) \) in distribution as \(m \to \infty \).

Use Slutsky's Theorem.
Proof technique of Asymptotic Normality

- \(W = \frac{\hat{\mu}_n - \mu}{\sqrt{\text{Var}(\hat{\mu}_n)}} \)
- Create a \(\tilde{W} \) satisfying \(W - \tilde{W} = o_p(1) \)
Proof technique of Asymptotic Normality

- \(W = (\hat{\mu}_n - \mu) / \sqrt{\text{Var}(\hat{\mu}_n)} \)
- Create a \(\tilde{W} \) satisfying \(W - \tilde{W} = o_p(1) \)
- Create an exchangeable pair \((\tilde{W}, \tilde{W}^*) \)
Proof technique of Asymptotic Normality

- \(W = (\hat{\mu}_n - \mu) / \sqrt{\text{Var}(\hat{\mu}_n)} \)
- Create a \(\tilde{W} \) satisfying \(W - \tilde{W} = o_p(1) \)
- Create an exchangeable pair \((\tilde{W}, \tilde{W}^*) \)
- Based on Exchangeable Pair technique of Stein’s Method, show that \(\tilde{W} \to \mathcal{N}(0, 1) \) in distribution as \(m \to \infty \).
Proof technique of Asymptotic Normality

- \(W = (\hat{\mu}_n - \mu) / \sqrt{\text{Var}(\hat{\mu}_n)} \)
- Create a \(\tilde{W} \) satisfying \(W - \tilde{W} = o_P(1) \)
- Create an exchangeable pair \((\tilde{W}, \tilde{W}^*) \)
- Based on Exchangeable Pair technique of Stein’s Method, show that \(\tilde{W} \to \mathcal{N}(0, 1) \) in distribution as \(m \to \infty \).
- Use Slutsky’s Theorem.
Confidence Intervals

- $f(x, y) = x_1 x_2^2 - y_1^3 y_2^4$ on $T^2 \times T^2$
Confidence Intervals

\[f(x, y) = x_1 x_2 y_1 y_2 \exp(x_1 x_2 y_1 y_2) \text{ on } T^2 \times T^2 \]
Take Away Message

There are good variance bounds for the estimator $\hat{\mu}_n$ for large n. Asymptotically accurate confidence sets can be easily constructed. QMC Methods can give us a way out of the Cube.
There are good variance bounds for the estimator $\hat{\mu}_n$ for large n.

Asymptotically accurate confidence sets can be easily constructed.

QMC Methods can give us a way out of the Cube.
Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_n$ for large n.
- Asymptotically accurate confidence sets can be easily constructed.
There are good variance bounds for the estimator $\hat{\mu}_n$ for large n.

Asymptotically accurate confidence sets can be easily constructed.
Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_n$ for large n.
- Asymptotically accurate confidence sets can be easily constructed.
- QMC Methods can give us a way out of the Cube.
Thank you

- The organizers
- Co-author Rajarshi Mukherjee
- Art Owen
- NSF Grant DMS-1407397

References: