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The Problem

@ Numerical integration
o Domain of interest : X° = szl XU). where each XU) c R9.

H= vol(lé’(s) /s Flx)dx

by an equal weight rule

@ To estimate

where x; are the points generated by QMC or RQMC methods.

3/28



Motivation

4/28



Motivation

@ Need to construct a confidence interval.

4/28



Motivation

@ Need to construct a confidence interval.

@ Asymptotic Distribution.

4/28



Motivation

@ Need to construct a confidence interval.
@ Asymptotic Distribution.
e Upper bound from Basu and Owen (2015).

4/28



Motivation

Need to construct a confidence interval.
Asymptotic Distribution.
Upper bound from Basu and Owen (2015).

Matching lower bound for the variance.

e 6 o6 o
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Our Strategy for Non-Cubical Space X’*

o Start with a (¢, m, s)-net in base b in [0,1)*.
@ Introduce randomization via Scrambling Algorithm to get u; € [0, 1)%.

@ Apply a mapping ¢ such that
x; = ¢(u;) € X°

(Scrambled geometric net)

o Equal weight rule

S|

@ Most interesting case : triangles, spherical triangles and discs.
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Previous Results

Lemma 1 (B. and Owen (2015b))

fin is unbiased for p.

Theorem 1 (B. and Owen (2015b))
There exists a constant C > 0 such that

. (logn)>~*
Var(fin) < CW’
under certain smoothness conditions on f and a sphericity constraint on

the partitioning of X’°.
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Main Results

@ Point set is a scrambled (0, m, s) geometric net in base b.

Theorem 2. (B. and Mukherjee (2016))

If f € F5 and the partitioning of X’® satisfies an eigenvalue condition, then
there exists a positive constant ¢ such that

. log n)s—!
Var(in) > "BV @)

v

o Define,

fin — ‘
v/ Var(fin)
Theorem 3. (B. and Mukherjee (2016))

Let b > max(s,d,2), f € Fs and if (2) holds, then W — A/(0,1) in
distribution as n — oo.
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Scrambled Geometric Nets - A simpler construction

@ Set of n = b™ points on the domain X°.
@ Fix a equal volume recursive partition in base b of the domain.
e Put a point x; uniformly at random within a cell of volume 1/b™.

@ For example on T2 using base b = 4,
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Splits on the Triangle

Figure: Splits of a triangle X for bases b =2, 3 and 4. The subtriangles X; are
labeled by the digit j € Zy,.
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Recursive Splits on the Triangle

2% Decomposition 33 Decomposition 43 Decomposition

Figure: The base b splits from previous figure carried out to k =6 or 3 or 4
levels.
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Splitting on the Disc
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A recursive binary equal area splitting of the unit disk, keeping the

aspect ratio close to unity.

Figure:
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Form of Variance

e Using Multiresolution Analysis of L2(X*),
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Form of Variance

e Using Multiresolution Analysis of L2(X*),

n

2
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i=1

1
= Z Z FU,KUL%’K.

|u|>0 klu

Var(fi,) = E

where
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Main Theorem on Lower Bound

Theorem 2: B. and Mukherjee (2016)

If f € Fs and an eigenvalue condition holds for the partitioning of the
domain, then there exists a positive constant ¢ such that

(log n)*~1

Var(fin) > C T2/

for all sufficiently large n.
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Smooth class of functions F;

Definition

A real-valued function f on X is smooth if for all u C s,

IV¥F(x) = V*F(x")]| < Bllx = x7||”

for some finite B > 0 and 3 € (0, 1] for all x, x* € X*.
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Smooth class of functions F;

Definition

A real-valued function f on X is smooth if for all u C s,
IV4f(x) — V“f(x*)]| < B ||x — x*||°

for some finite B > 0 and 3 € (0, 1] for all x, x* € X*.

Definition
Define Fs as the class of all smooth functions f on X° such that for all
uCs,

2

H VYf(x)dx|| > 0.
XS
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Eigenvalue Condition

Remember that,

1
Z Z "l)um'r'y @Zjum-»y/> H <1Cj=cf - b) .

T vy Jj€Eu
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Eigenvalue Condition

X

k-th subdivision

X
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Eigenvalue Condition

X Xk 1)
ny
w = ng
ng ny

k-th subdivision

o Define,

o\ (A(k’t)) > ¢b—2k/d for some & > 0.
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Some Examples

C
29
2 23
20\ 21
31N\30
3 PNERNER
0 1 03[\32[\13
ooNJ oI\ 10N 12
A B

@ Using the above subdivision,

A(k’t) _ ﬂ |: 2 —]_:|
6

o Thus, A; (Ak®)) = b=k/6
o If X =0,1], then Alkt) = p=2k <b2—1)_

12b
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f(x,y)= x1x22 — y13y§ on T2x T2
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Example continued
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Normal Q-Q Plots
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Proof technique of Asymptotic Normality

W = (fin — 1)/ +/ Var(fin)
Create a W satisfying W — W = 0,(1)
Create an exchangeable pair (W, W*)

e 6 o6 o

BNased on Exchangeable Pair technique of Stein's Method, show that
W — N(0,1) in distribution as m — cc.

Use Slutsky's Theorem.
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Confidence Intervals

o f(x,y) = xixoy1ys exp (x1x2y1y2) on T2 x T?
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Iterations
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Take Away Message

@ There are good variance bounds for the
estimator /i, for large n.

@ Asymptotically accurate confidence sets
can be easily constructed.

@ QMC Methods can give us a way out of
the Cube.

FEAR PARANO\A
SUSPICION DESPERRI\QW
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