Variance Lower Bound and Asymptotic Normality of Scrambled Geometric Nets

Kinjal Basu
Relevance Sciences, Linkedln

Joint work with Rajarshi Mukherjee

15th August, 2016

Overview

(1) Introduction
(2) Scrambled Geometric Nets
(3) Lower Bound on Variance

4 Asymptotic Normality

The Problem

- Numerical integration
- Domain of interest : $\mathcal{X}^{s}=\prod_{j=1}^{s} \mathcal{X}^{(j)}$, where each $\mathcal{X}^{(j)} \subset \mathbb{R}^{d}$.

The Problem

- Numerical integration
- Domain of interest : $\mathcal{X}^{s}=\prod_{j=1}^{s} \mathcal{X}^{(j)}$, where each $\mathcal{X}^{(j)} \subset \mathbb{R}^{d}$.
- To estimate

$$
\mu=\frac{1}{\operatorname{vol}\left(\mathcal{X}^{s}\right)} \int_{\mathcal{X}^{s}} f(x) d x
$$

The Problem

- Numerical integration
- Domain of interest : $\mathcal{X}^{s}=\prod_{j=1}^{s} \mathcal{X}^{(j)}$, where each $\mathcal{X}^{(j)} \subset \mathbb{R}^{d}$.
- To estimate

$$
\mu=\frac{1}{\operatorname{vol}\left(\mathcal{X}^{s}\right)} \int_{\mathcal{X}^{s}} f(\boldsymbol{x}) d \boldsymbol{x}
$$

by an equal weight rule

$$
\begin{equation*}
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right) \tag{1}
\end{equation*}
$$

where \boldsymbol{x}_{i} are the points generated by QMC or RQMC methods.

Motivation

Motivation

- Need to construct a confidence interval.

Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.

Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.
- Upper bound from Basu and Owen (2015).

Motivation

- Need to construct a confidence interval.
- Asymptotic Distribution.
- Upper bound from Basu and Owen (2015).
- Matching lower bound for the variance.

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

- Start with a (t, m, s)-net in base b in $[0,1)^{s}$.

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

- Start with a (t, m, s)-net in base b in $[0,1)^{s}$.
- Introduce randomization via Scrambling Algorithm to get $\boldsymbol{u}_{i} \in[0,1)^{s}$.

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

- Start with a (t, m, s)-net in base b in $[0,1)^{s}$.
- Introduce randomization via Scrambling Algorithm to get $\boldsymbol{u}_{i} \in[0,1)^{s}$.
- Apply a mapping ϕ such that

$$
\boldsymbol{x}_{i}=\phi\left(\boldsymbol{u}_{i}\right) \in \mathcal{X}^{s}
$$

(Scrambled geometric net)

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

- Start with a (t, m, s)-net in base b in $[0,1)^{s}$.
- Introduce randomization via Scrambling Algorithm to get $\boldsymbol{u}_{i} \in[0,1)^{s}$.
- Apply a mapping ϕ such that

$$
\boldsymbol{x}_{i}=\phi\left(\boldsymbol{u}_{i}\right) \in \mathcal{X}^{s}
$$

(Scrambled geometric net)

- Equal weight rule

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)
$$

Our Strategy for Non-Cubical Space \mathcal{X}^{s}

- Start with a (t, m, s)-net in base b in $[0,1)^{s}$.
- Introduce randomization via Scrambling Algorithm to get $\boldsymbol{u}_{i} \in[0,1)^{s}$.
- Apply a mapping ϕ such that

$$
\boldsymbol{x}_{i}=\phi\left(\boldsymbol{u}_{i}\right) \in \mathcal{X}^{s}
$$

(Scrambled geometric net)

- Equal weight rule

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)
$$

- Most interesting case : triangles, spherical triangles and discs.

Previous Results

Lemma 1 (B. and Owen (2015b))
$\hat{\mu}_{n}$ is unbiased for μ.

Previous Results

Lemma 1 (B. and Owen (2015b))

$\hat{\mu}_{n}$ is unbiased for μ.
Theorem 1 (B. and Owen (2015b))
There exists a constant $C>0$ such that

$$
\operatorname{Var}\left(\hat{\mu}_{n}\right) \leq C \frac{(\log n)^{s-1}}{n^{1+2 / d}},
$$

under certain smoothness conditions on f and a sphericity constraint on the partitioning of \mathcal{X}^{s}.

Main Results

Main Results

- Point set is a scrambled $(0, m, s)$ geometric net in base b.

Main Results

- Point set is a scrambled $(0, m, s)$ geometric net in base b.

Theorem 2. (B. and Mukherjee (2016))
If $f \in \mathcal{F}_{s}$ and the partitioning of \mathcal{X}^{s} satisfies an eigenvalue condition, then there exists a positive constant c such that

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\mu}_{n}\right) \geqslant c \frac{(\log n)^{s-1}}{n^{1+2 / d}} \tag{2}
\end{equation*}
$$

Main Results

- Point set is a scrambled $(0, m, s)$ geometric net in base b.

Theorem 2. (B. and Mukherjee (2016))
If $f \in \mathcal{F}_{s}$ and the partitioning of \mathcal{X}^{s} satisfies an eigenvalue condition, then there exists a positive constant c such that

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\mu}_{n}\right) \geqslant c \frac{(\log n)^{s-1}}{n^{1+2 / d}} \tag{2}
\end{equation*}
$$

- Define,

$$
W=\frac{\hat{\mu}_{n}-\mu}{\sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}}
$$

Main Results

- Point set is a scrambled $(0, m, s)$ geometric net in base b.

Theorem 2. (B. and Mukherjee (2016))
If $f \in \mathcal{F}_{s}$ and the partitioning of \mathcal{X}^{s} satisfies an eigenvalue condition, then there exists a positive constant c such that

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\mu}_{n}\right) \geqslant c \frac{(\log n)^{s-1}}{n^{1+2 / d}} \tag{2}
\end{equation*}
$$

- Define,

$$
W=\frac{\hat{\mu}_{n}-\mu}{\sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}}
$$

Theorem 3. (B. and Mukherjee (2016))

Let $b \geqslant \max (s, d, 2), f \in \mathcal{F}_{s}$ and if (2) holds, then $W \rightarrow \mathcal{N}(0,1)$ in distribution as $n \rightarrow \infty$.

Overview

(1) Introduction

(2) Scrambled Geometric Nets

3 Lower Bound on Variance

4 Asymptotic Normality

Scrambled Geometric Nets - A simpler construction

Scrambled Geometric Nets - A simpler construction

- Set of $n=b^{m}$ points on the domain \mathcal{X}^{s}.

Scrambled Geometric Nets - A simpler construction

- Set of $n=b^{m}$ points on the domain \mathcal{X}^{s}.
- Fix a equal volume recursive partition in base b of the domain.

Scrambled Geometric Nets - A simpler construction

- Set of $n=b^{m}$ points on the domain \mathcal{X}^{s}.
- Fix a equal volume recursive partition in base b of the domain.
- Put a point \boldsymbol{x}_{i} uniformly at random within a cell of volume $1 / b^{m}$.

Scrambled Geometric Nets - A simpler construction

- Set of $n=b^{m}$ points on the domain \mathcal{X}^{s}.
- Fix a equal volume recursive partition in base b of the domain.
- Put a point \boldsymbol{x}_{i} uniformly at random within a cell of volume $1 / b^{m}$.
- For example on T^{2} using base $b=4$,

(a)

(b)

Splits on the Triangle

$$
b=2
$$

$$
b=3
$$

$$
b=4
$$

Figure: Splits of a triangle \mathcal{X} for bases $b=2,3$ and 4. The subtriangles \mathcal{X}_{j} are labeled by the digit $j \in \mathbb{Z}_{b}$.

Recursive Splits on the Triangle

2^{6} Decomposition

4^{3} Decomposition

Figure: The base b splits from previous figure carried out to $k=6$ or 3 or 4 levels.

Splitting on the Disc

Figure: A recursive binary equal area splitting of the unit disk, keeping the aspect ratio close to unity.

Overview

(1) Introduction

(2) Scrambled Geometric Nets
(3) Lower Bound on Variance
4. Asymptotic Normality

Form of Variance

- Using Multiresolution Analysis of $L^{2}\left(\mathcal{X}^{s}\right)$,

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mu}_{n}\right) & =\mathbb{E}\left(\left[\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{i}\right)-\mu\right)\right]^{2}\right) \\
& =\frac{1}{n} \sum_{|u|>0} \sum_{\kappa \mid u} \Gamma_{u, \kappa} \sigma_{u, \kappa}^{2} .
\end{aligned}
$$

Form of Variance

- Using Multiresolution Analysis of $L^{2}\left(\mathcal{X}^{s}\right)$,

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mu}_{n}\right) & =\mathbb{E}\left(\left[\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{i}\right)-\mu\right)\right]^{2}\right) \\
& =\frac{1}{n} \sum_{|u|>0} \sum_{\kappa \mid u} \Gamma_{u, \kappa} \sigma_{u, \kappa}^{2} .
\end{aligned}
$$

where

$$
\sigma_{u, \kappa}^{2}=\sum_{\tau} \sum_{\gamma, \gamma^{\prime}}\left\langle f, \psi_{u \kappa \tau \gamma}\right\rangle\left\langle f, \psi_{u \kappa \tau \gamma^{\prime}}\right\rangle \prod_{j \in u}\left(\mathbb{1}_{c_{j}=c_{j}^{\prime}}-\frac{1}{b}\right) .
$$

Main Theorem on Lower Bound

Theorem 2: B. and Mukherjee (2016)
If $f \in \mathcal{F}_{s}$ and an eigenvalue condition holds for the partitioning of the domain, then there exists a positive constant c such that

$$
\operatorname{Var}\left(\hat{\mu}_{n}\right) \geqslant c \frac{(\log n)^{s-1}}{n^{1+2 / d}}
$$

for all sufficiently large n.

Smooth class of functions \mathcal{F}_{s}

Smooth class of functions \mathcal{F}_{s}

Definition

A real-valued function f on \mathcal{X}^{s} is smooth if for all $u \subseteq s$,

$$
\left\|\nabla^{u} f(\boldsymbol{x})-\nabla^{u} f\left(\boldsymbol{x}^{*}\right)\right\| \leq B\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|^{\beta}
$$

for some finite $B \geq 0$ and $\beta \in(0,1]$ for all $\boldsymbol{x}, \boldsymbol{x}^{*} \in \mathcal{X}^{s}$.

Smooth class of functions \mathcal{F}_{s}

Definition

A real-valued function f on \mathcal{X}^{s} is smooth if for all $u \subseteq s$,

$$
\left\|\nabla^{u} f(\boldsymbol{x})-\nabla^{u} f\left(\boldsymbol{x}^{*}\right)\right\| \leq B\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|^{\beta}
$$

for some finite $B \geq 0$ and $\beta \in(0,1]$ for all $\boldsymbol{x}, \boldsymbol{x}^{*} \in \mathcal{X}^{s}$.

Definition

Define \mathcal{F}_{s} as the class of all smooth functions f on \mathcal{X}^{s} such that for all $u \subseteq s$,

$$
\left\|\int_{\mathcal{X}^{s}} \nabla^{u} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\right\|^{2}>0
$$

Eigenvalue Condition

Eigenvalue Condition

Remember that,

$$
\sigma_{u, \kappa}^{2}=\sum_{\tau} \sum_{\gamma, \gamma^{\prime}}\left\langle f, \psi_{u \kappa \tau \gamma}\right\rangle\left\langle f, \psi_{u \kappa \tau \gamma^{\prime}}\right\rangle \prod_{j \in u}\left(\mathbb{1}_{c_{j}=c_{j}^{\prime}}-\frac{1}{b}\right) .
$$

Eigenvalue Condition

k-th subdivision

Eigenvalue Condition

- Define,

$$
A^{(k, t)}=\sum_{c=0}^{b-1}\left(\boldsymbol{n}_{c}-\boldsymbol{w}\right)\left(\boldsymbol{n}_{c}-\boldsymbol{w}\right)^{T}
$$

Eigenvalue Condition

- Define,

$$
A^{(k, t)}=\sum_{c=0}^{b-1}\left(\boldsymbol{n}_{c}-\boldsymbol{w}\right)\left(\boldsymbol{n}_{c}-\boldsymbol{w}\right)^{T}
$$

- $\lambda_{1}\left(A^{(k, t)}\right) \geq \tilde{c} b^{-2 k / d}$ for some $\tilde{c}>0$.

Some Examples

Some Examples

(a)

(b)

Some Examples

- Using the above subdivision,

$$
A^{(k, t)}=\frac{b^{-k}}{6}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

Some Examples

- Using the above subdivision,

$$
A^{(k, t)}=\frac{b^{-k}}{6}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

- Thus, $\lambda_{1}\left(A^{(k, t)}\right)=b^{-k} / 6$

Some Examples

- Using the above subdivision,

$$
A^{(k, t)}=\frac{b^{-k}}{6}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

- Thus, $\lambda_{1}\left(A^{(k, t)}\right)=b^{-k} / 6$
- If $\mathcal{X}=[0,1]$, then $A^{(k, t)}=b^{-2 k}\left(\frac{b^{2}-1}{12 b}\right)$.

$f(\boldsymbol{x}, \boldsymbol{y})=x_{1} x_{2}^{2}-y_{1}^{3} y_{2}^{4}$ on $T^{2} \times T^{2}$

Overview

(1) Introduction

(2) Scrambled Geometric Nets
(3) Lower Bound on Variance

4 Asymptotic Normality

Example continued

Normal Q-Q Plots

$$
\mathrm{m}=6
$$

Theoretical Quantiles

Theoretical Quantiles

$$
\mathbf{m}=7
$$

Theoretical Quantiles

Proof technique of Asymptotic Normality

Proof technique of Asymptotic Normality

- $W=\left(\hat{\mu}_{n}-\mu\right) / \sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}$

Proof technique of Asymptotic Normality

- $W=\left(\hat{\mu}_{n}-\mu\right) / \sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}$
- Create a \tilde{W} satisfying $W-\tilde{W}=o_{p}(1)$

Proof technique of Asymptotic Normality

- $W=\left(\hat{\mu}_{n}-\mu\right) / \sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}$
- Create a \tilde{W} satisfying $W-\tilde{W}=o_{p}(1)$
- Create an exchangeable pair $\left(\tilde{W}, \tilde{W}^{*}\right)$

Proof technique of Asymptotic Normality

- $W=\left(\hat{\mu}_{n}-\mu\right) / \sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}$
- Create a \tilde{W} satisfying $W-\tilde{W}=o_{p}(1)$
- Create an exchangeable pair $\left(\tilde{W}, \tilde{W}^{*}\right)$
- Based on Exchangeable Pair technique of Stein's Method, show that $\tilde{W} \rightarrow \mathcal{N}(0,1)$ in distribution as $m \rightarrow \infty$.

Proof technique of Asymptotic Normality

- $W=\left(\hat{\mu}_{n}-\mu\right) / \sqrt{\operatorname{Var}\left(\hat{\mu}_{n}\right)}$
- Create a \tilde{W} satisfying $W-\tilde{W}=o_{p}(1)$
- Create an exchangeable pair $\left(\tilde{W}, \tilde{W}^{*}\right)$
- Based on Exchangeable Pair technique of Stein's Method, show that $\tilde{W} \rightarrow \mathcal{N}(0,1)$ in distribution as $m \rightarrow \infty$.
- Use Slutsky's Theorem.

Confidence Intervals

- $f(\boldsymbol{x}, \boldsymbol{y})=x_{1} x_{2}^{2}-y_{1}^{3} y_{2}^{4}$ on $T^{2} \times T^{2}$

Confidence Intervals

- $f(\boldsymbol{x}, \boldsymbol{y})=x_{1} x_{2} y_{1} y_{2} \exp \left(x_{1} x_{2} y_{1} y_{2}\right)$ on $T^{2} \times T^{2}$

Take Away Message

Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_{n}$ for large n.

Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_{n}$ for large n.
- Asymptotically accurate confidence sets can be easily constructed.

Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_{n}$ for large n.
- Asymptotically accurate confidence sets can be easily constructed.

Take Away Message

- There are good variance bounds for the estimator $\hat{\mu}_{n}$ for large n.
- Asymptotically accurate confidence sets can be easily constructed.
- QMC Methods can give us a way out of the Cube.

Thank you

- The organizers
- Co-author Rajarshi Mukherjee
- Art Owen
- NSF Grant DMS-1407397

References:

- Basu, K and Mukherjee, R. (2016) Asymptotic normality of scrambled geometric net quadrature. The Annals of Statistics. To Appear.
- Basu, K and Owen, A. (2015) Scrambled geometric net integration over general product spaces. Foundations of Computational Mathematics. In Press.

