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The Problem

Numerical integration
Domain of interest : X s =

∏s
j=1X (j), where each X (j) ⊂ Rd .

To estimate
µ =

1
vol(X s)

∫
X s

f (x)dx

by an equal weight rule

µ̂n =
1
n

n∑
i=1

f (x i ), (1)

where x i are the points generated by QMC or RQMC methods.
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Motivation

Need to construct a confidence interval.
Asymptotic Distribution.
Upper bound from Basu and Owen (2015).
Matching lower bound for the variance.
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Our Strategy for Non-Cubical Space X s

Start with a (t,m, s)-net in base b in [0, 1)s .
Introduce randomization via Scrambling Algorithm to get u i ∈ [0, 1)s .
Apply a mapping φ such that

x i = φ(u i ) ∈ X s

(Scrambled geometric net)
Equal weight rule

µ̂n =
1
n

n∑
i=1

f (x i )

Most interesting case : triangles, spherical triangles and discs.
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Previous Results

Lemma 1 (B. and Owen (2015b))
µ̂n is unbiased for µ.

Theorem 1 (B. and Owen (2015b))
There exists a constant C > 0 such that

Var(µ̂n) ≤ C
(log n)s−1

n1+2/d ,

under certain smoothness conditions on f and a sphericity constraint on
the partitioning of X s .
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Main Results

Point set is a scrambled (0,m, s) geometric net in base b.

Theorem 2. (B. and Mukherjee (2016))
If f ∈ Fs and the partitioning of X s satisfies an eigenvalue condition, then
there exists a positive constant c such that

Var(µ̂n) > c
(log n)s−1

n1+2/d . (2)

Define,

W =
µ̂n − µ√
Var(µ̂n)

.

Theorem 3. (B. and Mukherjee (2016))
Let b > max(s, d , 2), f ∈ Fs and if (2) holds, then W → N (0, 1) in
distribution as n→∞.
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Scrambled Geometric Nets - A simpler construction

Set of n = bm points on the domain X s .
Fix a equal volume recursive partition in base b of the domain.
Put a point x i uniformly at random within a cell of volume 1/bm.
For example on T 2 using base b = 4,
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31
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C

(a) (b)
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Splits on the Triangle
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Figure: Splits of a triangle X for bases b = 2, 3 and 4. The subtriangles Xj are
labeled by the digit j ∈ Zb.
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Recursive Splits on the Triangle

26 Decomposition 33 Decomposition 43 Decomposition

Figure: The base b splits from previous figure carried out to k = 6 or 3 or 4
levels.
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Splitting on the Disc

Figure: A recursive binary equal area splitting of the unit disk, keeping the
aspect ratio close to unity.
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Form of Variance

Using Multiresolution Analysis of L2(X s),

Var(µ̂n) = E

[1
n

n∑
i=1

(f (x i )− µ)

]2


=
1
n

∑
|u|>0

∑
κ|u

Γu,κσ
2
u,κ.

where

σ2
u,κ =

∑
τ

∑
γ,γ′

〈f , ψuκτγ〉〈f , ψuκτγ′〉
∏
j∈u

(
1cj=c ′j

− 1
b

)
.
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Main Theorem on Lower Bound

Theorem 2: B. and Mukherjee (2016)
If f ∈ Fs and an eigenvalue condition holds for the partitioning of the
domain, then there exists a positive constant c such that

Var(µ̂n) > c
(log n)s−1

n1+2/d ,

for all sufficiently large n.

15 / 28



Smooth class of functions Fs

Definition
A real-valued function f on X s is smooth if for all u ⊆ s,

‖∇uf (x)−∇uf (x∗)‖ ≤ B ‖x − x∗‖β

for some finite B ≥ 0 and β ∈ (0, 1] for all x , x∗ ∈ X s .

Definition
Define Fs as the class of all smooth functions f on X s such that for all
u ⊆ s, ∥∥∥∥∫

X s

∇uf (x) dx
∥∥∥∥2

> 0.
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Eigenvalue Condition
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Eigenvalue Condition

n0

n2

n1

w = n3

X(k,t)X

k-th subdivision

Define,

A(k,t) =
b−1∑
c=0

(nc −w)(nc −w)T

λ1
(
A(k,t)

)
≥ c̃b−2k/d for some c̃ > 0.
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Some Examples

00
03

01
32

10
13

11

33
30

12
31

02

20
23

21

22

3
10

2

A B

C

(a) (b)

Using the above subdivision,

A(k,t) =
b−k

6

[
2 −1
−1 2

]

Thus, λ1
(
A(k,t)

)
= b−k/6

If X = [0, 1], then A(k,t) = b−2k
(
b2−1
12b

)
.
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f (x , y) = x1x
2
2 − y 31 y

4
2 on T 2 × T 2

log4(n)
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Example continued

−4 −2 0 2 4
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si
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Normal Q-Q Plots
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Proof technique of Asymptotic Normality

W = (µ̂n − µ)/
√

Var(µ̂n)

Create a W̃ satisfying W − W̃ = op(1)

Create an exchangeable pair (W̃ , W̃ ∗)

Based on Exchangeable Pair technique of Stein’s Method, show that
W̃ → N (0, 1) in distribution as m→∞.
Use Slutsky’s Theorem.
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Confidence Intervals
f (x , y) = x1x

2
2 − y3

1 y
4
2 on T 2 × T 2
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Confidence Intervals
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Take Away Message

There are good variance bounds for the
estimator µ̂n for large n.
Asymptotically accurate confidence sets
can be easily constructed.
QMC Methods can give us a way out of
the Cube.
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Thank you

The organizers
Co-author Rajarshi Mukherjee
Art Owen
NSF Grant DMS-1407397
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