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Introduction

Quasi-Monte Carlo (QMC) on [0, 1]m.
Triangles, disks, simplices, spheres, balls, etc are also of importance in
applications.

In MC, find a transformation, τ : [0, 1]m → X ⊂ Rd which is measure
preserving.
To estimate µ =

∫
X f (x) dx we use

µ̂ =
vol(X )

n

n∑
i=1

f (τ(u i )) for u i
iid∼U[0, 1]m

O(1/
√
n).
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QMC Approach: Striving for a better rate

Use the same transformation τ as in MC.
Plug in QMC or randomized QMC (RQMC) instead of random u i .
Using Koskma-Hlawka inequality,∣∣∣∣∣
∫
X
f (x) dx − 1

n

n∑
i=1

f (τ(u i ))

∣∣∣∣∣ =

∣∣∣∣∣
∫
[0,1]d

f (τ(u)) du − 1
n

n∑
i=1

f (τ(u i ))

∣∣∣∣∣
≤ D∗n(u1, . . . ,un)VHK(f ◦ τ)

If VHK(f ◦ τ) <∞, we can attain O(n−1+ε).
Under additional smoothness RQMC methods (scrambled nets) can
yield O(n−3/2+ε).
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The Problem

Does this always work?

Answer : Sadly no!
Can we find conditions on which this technique works?
Answer : YES!
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Overview

1 Smoothness Conditions
Function Composition

2 Necessary and Sufficient Conditions

3 Counter-Examples
Infinite Hardy-Krause Variation
Non L2 Mapping

4 Non-Uniform Transformations
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Smoothness Conditions

QMC attains an error rate of O(n−1(log n)m−1), if f ∈ BVHK.

If the mixed partial derivative ∂1:mf exists then

VHK(f ) ≤
∑
u 6=∅

∫
[0,1]|u|

|∂uf (xu:1−u)| dxu.

[Owen (2005)]

For scrambled nets to attain O(n−3/2(log n)(m−1)/2), f must be
smooth in the following sense.

‖∂uf ‖22 ≡
∫

(∂uf (x))2 dx <∞, ∀u ⊆ 1:m.

[Dick and Pillichshammer (2010)]
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Function Composition

We want condition under which f ◦ τ : [0, 1]m → Rd → R is in BVHK.

If d = m = 1 we reduce to the case of ordinary BV.
If τ is of bounded variation and f is Lipschitz, then f ◦ τ is of bounded
variation. [Josephy (1981)]

Not the case for BVHK in higher dimensions.
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A counter-example

Let τ be the identity map on [0, 1]2 so that both τ1 and τ2 are in
BVHK.
Then we construct a Lipschitz function f : [0, 1]2 → R with
f ◦ τ = f 6∈ BVHK.
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Sierpenkski function

A2

A1 A4

A3

Figure: The plot on the left shows the square partition P which is repeated in a
recursive manner. The right figure shows the function as a 2-dimensional
projection for k = 3. Each such pyramidal structure has a height of half the
length of its base square.
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Results

Lemma 1
The function f is Lipschitz on [0, 1]2 with respect to the Euclidean norm.

Lemma 2
The function f 6∈ BVHK. If we define a d-dimensional function
fd(x1, . . . , xd) := f (x1, x2), then fd is Lipschitz on [0, 1]d but fd 6∈ BVHK.
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Faa di Bruno formula

Remember that,

VHK(f ) ≤
∑
u 6=∅

∫
[0,1]|u|

|∂uf (xu:1−u)| dxu.

Study f ◦ τ using the Multivariate Faa di Bruno formula due to
Constantine and Savits (1996).
τ : [0, 1]m → X ⊂ Rd and f : X → R.
Let λ = (λ1, . . . , λd) ∈ Nd

0 . Then fλ is the derivative of f taken λi
times with respect to xi .
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Multivariate Faa di Bruno formula

For any v ⊆ 1 : m,

∂v (f ◦ τ) =
∑
λ∈Nd0

1≤|λ|≤|v|

fλ

|v |∑
s=1

∑
(`r ,kr )∈K̃L(s,v ,λ)

s∏
r=1

∂`r τkr

where K̃L(s, v ,λ) equals{
(`r , kr ), r = 1, . . . , s,

∣∣∣ `r ⊆ 1:m, kr ∈ 1:d , ∪sr=1`r = v ,

`r ∩ `r ′ = ∅ for r 6= r ′ and |{j ∈ 1:s | kj = i}| = λi

}
.
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Main Result for QMC point set

Theorem 1. B and Owen (2016)
Let τ(u) be as described. Assume that∫

[0,1]|v|

s∏
r=1

∣∣∂`r τkr (uv :1−v )
∣∣ duv <∞

holds under appropriate set-up. Then f ◦ τ ∈ BVHK for all f ∈ Cm(X ).

15 / 29



Sufficient Condition

Corollary 1. B and Owen (2016)

If ∂vτj(uv :1−v ) ∈ Lpj
(
[0, 1]|v |

)
for all j and v ⊆ 1:m, where pj ∈ [1,∞]

and
∑d

j=1 1/pj ≤ 1 then f ◦ τ ∈ BVHK for all f ∈ Cm(X ).

Proof: Generalized Holder inequality and Lpj conditions establish,∫
[0,1]|v|

s∏
r=1

∣∣∂`r τkr (uv :1−v )
∣∣ duv <∞
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Main Result for RQMC (Scrambled Net)

Theorem 2. B and Owen (2016)
Let τ(u) be as described. Assume that∫

[0,1]d

s∏
r=1

∣∣∂`r τkr (u)
∣∣2 du <∞

holds under appropriate set-up. Then f ◦ τ is smooth enough to benefit
from randomization.
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Sufficient Condition

Corollary 2. B and Owen (2016)
If ∂vτj ∈ Lpj ([0, 1]m) for all j and v ⊆ 1:m, where pj ∈ [1,∞]. and∑d

j=1 1/pj ≤ 1/2, then f ◦ τ is smooth enough to benefit from
randomization.

18 / 29



Necessary Conditions

Much more subtle.
f can repair any problem by being constant.
τ is unsuitable for QMC when one or more of the components τj has
∂vτj(· : 1−v ) 6∈ L1 for some v ⊂ 1:m.
Thus τj 6∈ BVHK.
Similarly, if ∂vτj 6∈ L2 for any j and v , then τ is not a good candidate
for RQMC (scrambled nets).
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Map from [0, 1]3 to Equilateral Triangle in 3-dimensions

Let T 3 = {(x , y , z) ∈ R3 : x + y + z = 1} be an equilateral triangle in
3- dimensions. Consider the map τ : [0, 1]3 → T 3 defined by

τj(u1, u2, u3) =
log uj∑3
i=1 log ui

j = 1, 2, 3.

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2τ1
∂u1∂u2

∣∣∣∣
u3=1

du1du2 =∞

Thus τ 6∈ BVHK.
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Map from [0, 1]d to Sphere in d -dimensions via Inverse
Gaussian CDF

The mapping from [0, 1]d to X = Sd−1 is

τj(u) =
Φ−1(uj)√∑d
i=1 Φ−1(ui )2

.

∫ ∣∣∣∂1:dτj

∣∣∣ du =∞

Thus τ 6∈ BVHK.
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Non L2 Mapping

"Necessary" Condition : ∂vτj ∈ L2 to benefit from RQMC.

Fang and Wang (1994) gave mappings to the following domains

Ad = {(x1, . . . , xd) : 0 ≤ x1 ≤ . . . ≤ xd ≤ 1}
Bd = {(x1, . . . , xd) : x2

1 + . . .+ x2
d ≤ 1}

Ud = {(x1, . . . , xd) : x2
1 + . . .+ x2

d = 1}
Vd = {(x1, . . . , xd) ∈ Rd

+ : x1 + . . .+ xd ≤ 1}
Td = {(x1, . . . , xd) ∈ Rd

+ : x1 + . . .+ xd = 1}

Each τ ∈ BVHK .
None of them satisfy ∂vτj ∈ L2.
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None of them satisfy ∂vτj ∈ L2.
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Non L2 Mapping

"Necessary" Condition : ∂vτj ∈ L2 to benefit from RQMC.
Fang and Wang (1994) gave mappings to the following domains

Ad = {(x1, . . . , xd) : 0 ≤ x1 ≤ . . . ≤ xd ≤ 1}
Bd = {(x1, . . . , xd) : x2

1 + . . .+ x2
d ≤ 1}

Ud = {(x1, . . . , xd) : x2
1 + . . .+ x2

d = 1}
Vd = {(x1, . . . , xd) ∈ Rd

+ : x1 + . . .+ xd ≤ 1}
Td = {(x1, . . . , xd) ∈ Rd

+ : x1 + . . .+ xd = 1}

Each τ ∈ BVHK .
None of them satisfy ∂vτj ∈ L2.

23 / 29



Overview

1 Smoothness Conditions
Function Composition

2 Necessary and Sufficient Conditions

3 Counter-Examples
Infinite Hardy-Krause Variation
Non L2 Mapping

4 Non-Uniform Transformations

24 / 29



Importance Sampling

Aim : Estimate µ =
∫
f (x)dP .

Assume the measure P has a density p.
Use τ on [0, 1]m which yields x = τ(u) ∼ q on X when u ∼ U[0, 1]m.
We estimate µ by

µ̂nq =
1
n

n∑
i=1

f (τ(u i ))p(τ(u i ))

q(τ(u i ))
=

1
n

n∑
i=1

(
fp

q
◦ τ
)

(u i ).

If q(x) > 0 whenever f (x)p(x) 6= 0 (and if µ exists) then E(µ̂nq) = µ.
To apply the Koksma-Hlawka inequality we only need
(fp/q) ◦ τ ∈ BVHK.
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Sufficient Condition for Importance Sampling

Corollary 3. B and Owen (2016)
Under the above setup, assume τ satisfies the conditions of Theorem 1 and
that fp/q ∈ Cm(X ). Then, for a low-discrepancy point set u1, . . . ,un in
[0, 1]m,∣∣∣∣∫

X
f (x)p(x) dx − 1

n

n∑
i=1

(
fp

q
◦ τ
)

(u i )

∣∣∣∣ = O

(
(log n)m−1

n

)
.

Proof.
Follows from Theorem 1 and the Koksma-Hlawka inequality.
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Sufficient Condition for Importance Sampling

The result works when X is bounded. Especially for spiky integrands
on compact sets X .

Note that if f ∈ Cm, then fp/q ∈ Cm as long as p/q ∈ Cm.
Take q(x) ∝ p(x) exp(θTx) for a parameter θ ∈ Rd . Then
p/q ∈ Cm(X ) when X is bounded. [Asmussen and Glynn (2007)]
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Conclusion

We give sufficient conditions for VHK (f ◦ τ) <∞ as well as well the
transformation can benefit from RQMC.
For most of the common known transformations there is no guarantee
of QMC rate. Need constructive proof in almost all spaces and regions.
For general measures, it might be possible to get QMC rate.
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Thank you!

For this amazing graduation gift!
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