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Introduction

Quasi-Monte Carlo (QMC) on [0, 1]™.

Triangles, disks, simplices, spheres, balls, etc are also of importance in
applications.

e In MC, find a transformation, 7 : [0,1]™ — X C R? which is measure
preserving.

To estimate y = [, f(x) dx we use

o= voll) Z F(r(u))  for uiu[o, 7)™

O(1//n).
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QMC Approach: Striving for a better rate

Use the same transformation 7 as in MC.
Plug in QMC or randomized QMC (RQMC) instead of random u;.
Using Koskma-Hlawka inequality,

1 o 1<
f(x)dx — — f(r(u;))| = f(r(u))du — - f(7r(u;
/. # n;u))‘ e D) 3 flrtu)

S D;',‘(ul, ey Un)VHK(fOT)

If Vg (f o T) < 0o, we can attain O(n~17¢).

Under additional smoothness RQMC methods (scrambled nets) can
yield O(n=3/2%¢).
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The Problem

Does this always work?

Answer : Sadly no!

Can we find conditions on which this technique works?
Answer : YES!
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Overview

@ Smoothness Conditions
@ Function Composition

© Necessary and Sufficient Conditions

© Counter-Examples
@ Infinite Hardy-Krause Variation
e Non L? Mapping

@ Non-Uniform Transformations

5/29



Overview

@ Smoothness Conditions
@ Function Composition

6/29



Smoothness Conditions

e QMC attains an error rate of O(n~t(logn)™"1), if f € BVHK.

7/29



Smoothness Conditions

e QMC attains an error rate of O(n~t(logn)™"1), if f € BVHK.

o If the mixed partial derivative 9% ™f exists then

Vi (f <Z oale |0“F(x,:1_,)] dx,,.

[Owen (2005)]

7/29



Smoothness Conditions

e QMC attains an error rate of O(n~t(logn)™"1), if f € BVHK.

o If the mixed partial derivative 9% ™f exists then

VHK < Z/ _u)’dxu.
0

1]\u\

[Owen (2005)]

@ For scrambled nets to attain O(n=3/%(log n){(™=1)/2) f must be
smooth in the following sense.

|04F||3 = /(8“7‘(x))2 dx < oo, VuCLlim.

[Dick and Pillichshammer (2010)]
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Function Composition

o We want condition under which f o7 : [0,1]™ — RY — R is in BVHK.
@ If d = m =1 we reduce to the case of ordinary BV.

o If 7 is of bounded variation and f is Lipschitz, then f o 7 is of bounded
variation. [Josephy (1981)]

@ Not the case for BVHK in higher dimensions.
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A counter-example

o Let 7 be the identity map on [0, 1]? so that both 71 and 7, are in
BVHK.

@ Then we construct a Lipschitz function f : [0,1]?> — R with
for=f¢BVHK.
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Sierpenkski function

Ay

As

Ay

Ay

Figure: The plot on the left shows the square partition P which is repeated in a

recursive manner. The right figure shows the function as a 2-dimensional
projection for k = 3. Each such pyramidal structure has a height of half the

length of its base square.
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Results

Lemma 1
The function f is Lipschitz on [0, 1]? with respect to the Euclidean norm.

v

Lemma 2

The function f ¢ BVHK. If we define a d-dimensional function
fy(x1,...,x4) := f(x1,x2), then fy is Lipschitz on [0,1]? but f; ¢ BVHK.
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Faa di Bruno formula

@ Remember that,

VHK < Z - |8U —u)’ dxu.

Study f o 7 using the Multivariate Faa di Bruno formula due to
Constantine and Savits (1996).

7:00,1]" - X CR%and f: X — R.
Let A= (A1,...,A\q) € Nd. Then fy is the derivative of f taken \;
times with respect to x;.
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Multivariate Faa di Bruno formula
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Multivariate Faa di Bruno formula

@ ForanyvC1:m,

o= 3 A S [[on

aeng 5= (g, k)eRL(s,v,A) =1
1§I>\\§IV\

where ﬁ(s, v, A) equals
{(E,, k), r=1,...,s, ‘ L, CLlim, k, € 1id, Uj_14, = v,

(Nl =0forr#r and |{j € Lis | kj = i} :)\,-}.
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Overview

© Necessary and Sufficient Conditions
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Main Result for QMC point set

Theorem 1. B and Owen (2016)
Let 7(u) be as described. Assume that

S
/[o 1 H‘aeerr(”v:l—v)‘ du, < o0
’ r=1

holds under appropriate set-up. Then f o7 € BVHK for all f € C™(X).
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Sufficient Condition

Corollary 1. B and Owen (2016)

If 0¥7j(u,:1_)) € L”J’([O, 1]|"|) for all j and v C 1:m, where p; € [1, o0]
and 3¢, 1/p; < 1 then f o 7 € BVHK for all f € C™(X).
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Sufficient Condition

Corollary 1. B and Owen (2016)

If 9¥7j(uy:1_,) € LPi([0,1]]) for all j and v C 1:m, where p; € [1,00]
and 3¢, 1/p; < 1 then f o 7 € BVHK for all f € C™(X).

@ Proof: Generalized Holder inequality and LP conditions establish,

ot v 1)) du,
/[0,1]”,:1_[1‘ Tkr(U )} u, < oo
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Main Result for RQMC (Scrambled Net)

Theorem 2. B and Owen (2016)
Let 7(u) be as described. Assume that

ZfT 2 u < oo
/ol]dl_ﬂa kel )| du=

holds under appropriate set-up. Then f o 7 is smooth enough to benefit
from randomization.
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Sufficient Condition

Corollary 2. B and Owen (2016)

If 0¥7; € LPi([0,1]™) for all j and v C 1:m, where p; € [1,00]. and
Z}j:l 1/pj < 1/2, then f o7 is smooth enough to benefit from
randomization.
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Necessary Conditions

@ Much more subtle.

@ f can repair any problem by being constant.

e 7 is unsuitable for QMC when one or more of the components 7; has
oVri(-:1_,) & L! for some v C 1:m.

e Thus 7; ¢ BVHK.

e Similarly, if 9“7; & L? for any j and v, then 7 is not a good candidate
for RQMC (scrambled nets).
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Overview

© Counter-Examples
@ Infinite Hardy-Krause Variation
e Non L? Mapping
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Map from [0, 1]3 to Equilateral Triangle in 3-dimensions
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o Let T3 ={(x,y,2z) € R3: x+y+z =1} be an equilateral triangle in
3- dimensions. Consider the map 7 : [0,1]> — T3 defined by

log uj

e =1,2,3.
> logu
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Map from [0, 1]3 to Equilateral Triangle in 3-dimensions

o Let T3 ={(x,y,2z) € R3: x+y+z =1} be an equilateral triangle in
3- dimensions. Consider the map 7 : [0,1]> — T3 defined by

log uj

e =1,2,3.
> logu

Tj(u1, o, u3) =

A

e Thus 7 ¢ BVHK.

0°m
aU18u2

duidu, = oo

uz=1
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Map from [0, 1]¢ to Sphere in d-dimensions via Inverse
Gaussian CDF

@ The mapping from [0,1]9 to X =S 1 is
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Non L? Mapping
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Non L? Mapping

o "Necessary" Condition : 9“7 € L? to benefit from RQMC.
e Fang and Wang (1994) gave mappings to the following domains

( ):0<x <. <xg <1}

( ) X3 +xd<1}
Ug={(x1,...,xq) : x2 + .. —|—xd:1}

( )GRi 1t xg <1}

( ) €

X1y voyXd X1—|-...+Xd:1}
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Non L? Mapping

@ "Necessary" Condition :

0'1j € L2 to benefit from RQMC.

e Fang and Wang (1994) gave mappings to the following domains

Ag = {(x1,
Ba = {(x1,
Ug = {(x1,
Vg = {(x1,
Ta = {(x,

o Each 7 € BVHK.

Xg):0<x3 <...<xy <1}

,Xg) X3¢ +xd<1}
CXd) XA x5 =1}

,Xd)ERi X1+ ...+ xg <1}
X)) ERY x4 xg =1}
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Non L? Mapping

o "Necessary" Condition : 9“7 € L? to benefit from RQMC.
e Fang and Wang (1994) gave mappings to the following domains

Ag = {(x,
Bg = {(x1,
Ug = {(x1,
Vg = {(x1,
Ta = {(x,

o Each 7 € BVHK.

 Xd) 1 0<x <...< x4 <1}
X)X x5 <1}
X)X x5 =1}
xd) ERL i xg 4+ 4 xg <1}
,xd)eRi:x1+...+xd:1}

@ None of them satisfy 9"7; € L2
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Overview

@ Non-Uniform Transformations
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Importance Sampling

e Aim : Estimate u = [ f(x)dP.
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Importance Sampling

e Aim : Estimate u = [ f(x)dP.

@ Assume the measure P has a density p.

e Use 7 on [0,1]™ which yields x = 7(u) ~ g on X when u ~ U[0, 1]™.
@ We estimate u by

~n n fTU,' T\U; f
jn = L3 £l ol ))zlz(”w)w;).

ar(w) n=\q
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Importance Sampling

Aim : Estimate = [ f(x)dP.

Assume the measure P has a density p.

Use 7 on [0, 1]™ which yields x = 7(u) ~ g on X when u ~ U[0, 1]™.
We estimate u by

If g(x) > 0 whenever f(x)p(x) # 0 (and if p exists) then E(ig) = p.
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Importance Sampling

Aim : Estimate = [ f(x)dP.

Assume the measure P has a density p.

Use 7 on [0, 1]™ which yields x = 7(u) ~ g on X when u ~ U[0, 1]™.
We estimate u by

If g(x) > 0 whenever f(x)p(x) # 0 (and if p exists) then E(ig) = p.

@ To apply the Koksma-Hlawka inequality we only need
(fp/q) o T € BVHK.
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Sufficient Condition for Importance Sampling

Corollary 3. B and Owen (2016)

Under the above setup, assume 7 satisfies the conditions of Theorem 1 and
that fp/q € C™(X). Then, for a low-discrepancy point set uy, ..., u, in

0,1]™,
’/X Al e — %Zl (% 0 T> (u)| = 0 (M) .
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Sufficient Condition for Importance Sampling

Corollary 3. B and Owen (2016)

Under the above setup, assume 7 satisfies the conditions of Theorem 1 and
that fp/q € C™(X). Then, for a low-discrepancy point set uy, ..., u, in

[0, 1]™,
1 /fp (log n)™~1
’/X f(x)p(x)dx — ;Z (E o7'> (uj)|=0 (7 .
Proof.
Follows from Theorem 1 and the Koksma-Hlawka inequality. Ol

i=1

26 /29




Sufficient Condition for Importance Sampling

@ The result works when X is bounded. Especially for spiky integrands
on compact sets X.
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Sufficient Condition for Importance Sampling

@ The result works when X is bounded. Especially for spiky integrands
on compact sets X.

@ Note that if f € C™, then fp/q € C™ as long as p/q € C™.

o Take g(x) ox p(x)exp(67x) for a parameter § € RY. Then
p/q S Cm(X) When X is bOunded. [Asmussen and Glynn (2007)]
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Conclusion

e We give sufficient conditions for Viyk(f o 7) < 0o as well as well the
transformation can benefit from RQMC.

@ For most of the common known transformations there is no guarantee
of QMC rate. Need constructive proof in almost all spaces and regions.

@ For general measures, it might be possible to get QMC rate.
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Thank youl

@ For this amazing graduation gift!
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