Transformations and Hardy-Krause Variation

Kinjal Basu

Joint work with Prof. Art Owen
Department of Statistics
Stanford University

Workshop in Discrepancy Theory
Varenna, Italy

16th June, 2016

Introduction

- Quasi-Monte Carlo (QMC) on $[0,1]^{m}$.
- Triangles, disks, simplices, spheres, balls, etc are also of importance in applications.

Introduction

- Quasi-Monte Carlo (QMC) on $[0,1]^{m}$.
- Triangles, disks, simplices, spheres, balls, etc are also of importance in applications.
- In MC, find a transformation, $\tau:[0,1]^{m} \rightarrow \mathcal{X} \subset \mathbb{R}^{d}$ which is measure preserving.

Introduction

- Quasi-Monte Carlo (QMC) on $[0,1]^{m}$.
- Triangles, disks, simplices, spheres, balls, etc are also of importance in applications.
- In MC, find a transformation, $\tau:[0,1]^{m} \rightarrow \mathcal{X} \subset \mathbb{R}^{d}$ which is measure preserving.
- To estimate $\mu=\int_{\mathcal{X}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$ we use

$$
\hat{\mu}=\frac{\operatorname{vol}(\mathcal{X})}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right) \quad \text { for } \boldsymbol{u}_{i} \stackrel{\mathrm{iid}}{\sim} \mathbf{U}[0,1]^{m}
$$

Introduction

- Quasi-Monte Carlo (QMC) on $[0,1]^{m}$.
- Triangles, disks, simplices, spheres, balls, etc are also of importance in applications.
- In MC, find a transformation, $\tau:[0,1]^{m} \rightarrow \mathcal{X} \subset \mathbb{R}^{d}$ which is measure preserving.
- To estimate $\mu=\int_{\mathcal{X}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$ we use

$$
\hat{\mu}=\frac{\operatorname{vol}(\mathcal{X})}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right) \quad \text { for } \boldsymbol{u}_{i} \stackrel{\mathrm{iid}}{\sim} \mathbf{U}[0,1]^{m}
$$

- $O(1 / \sqrt{n})$.

QMC Approach: Striving for a better rate

QMC Approach: Striving for a better rate

- Use the same transformation τ as in MC.
- Plug in QMC or randomized QMC (RQMC) instead of random \boldsymbol{u}_{i}.

QMC Approach: Striving for a better rate

- Use the same transformation τ as in MC.
- Plug in QMC or randomized QMC (RQMC) instead of random \boldsymbol{u}_{i}.
- Using Koskma-Hlawka inequality,

$$
\begin{aligned}
\left|\int_{\mathcal{X}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| & =\left|\int_{[0,1]^{d}} f(\tau(\boldsymbol{u})) \mathrm{d} \boldsymbol{u}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| \\
& \leq D_{n}^{*}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right) \mathrm{V}_{\mathrm{HK}}(f \circ \tau)
\end{aligned}
$$

QMC Approach: Striving for a better rate

- Use the same transformation τ as in MC.
- Plug in QMC or randomized QMC (RQMC) instead of random \boldsymbol{u}_{i}.
- Using Koskma-Hlawka inequality,

$$
\begin{aligned}
\left|\int_{\mathcal{X}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| & =\left|\int_{[0,1]^{d}} f(\tau(\boldsymbol{u})) \mathrm{d} \boldsymbol{u}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| \\
& \leq D_{n}^{*}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right) \mathrm{V}_{\mathrm{HK}}(f \circ \tau)
\end{aligned}
$$

- If $\mathrm{V}_{\mathrm{HK}}(f \circ \tau)<\infty$, we can attain $O\left(n^{-1+\epsilon}\right)$.

QMC Approach: Striving for a better rate

- Use the same transformation τ as in MC.
- Plug in QMC or randomized QMC (RQMC) instead of random \boldsymbol{u}_{i}.
- Using Koskma-Hlawka inequality,

$$
\begin{aligned}
\left|\int_{\mathcal{X}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| & =\left|\int_{[0,1]^{d}} f(\tau(\boldsymbol{u})) \mathrm{d} \boldsymbol{u}-\frac{1}{n} \sum_{i=1}^{n} f\left(\tau\left(\boldsymbol{u}_{i}\right)\right)\right| \\
& \leq D_{n}^{*}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right) \mathrm{V}_{\mathrm{HK}}(f \circ \tau)
\end{aligned}
$$

- If $\mathrm{V}_{\mathrm{HK}}(f \circ \tau)<\infty$, we can attain $O\left(n^{-1+\epsilon}\right)$.
- Under additional smoothness RQMC methods (scrambled nets) can yield $O\left(n^{-3 / 2+\epsilon}\right)$.

The Problem

- Does this always work?

The Problem

- Does this always work?
- Answer: Sadly no!

The Problem

- Does this always work?
- Answer: Sadly no!
- Can we find conditions on which this technique works?

The Problem

- Does this always work?
- Answer: Sadly no!
- Can we find conditions on which this technique works?
- Answer : YES!

Overview

(1) Smoothness Conditions

- Function Composition
(2) Necessary and Sufficient Conditions
(3) Counter-Examples
- Infinite Hardy-Krause Variation
- Non L^{2} Mapping

4 Non-Uniform Transformations

Overview

(1) Smoothness Conditions

- Function Composition

(2) Necessary and Sufficient Conditions

(3) Counter-Examples

- Infinite Hardy-Krause Variation
- Non L² Mapping

4 Non-Uniform Transformations

Smoothness Conditions

- QMC attains an error rate of $O\left(n^{-1}(\log n)^{m-1}\right)$, if $f \in$ BVHK.

Smoothness Conditions

- QMC attains an error rate of $O\left(n^{-1}(\log n)^{m-1}\right)$, if $f \in$ BVHK.
- If the mixed partial derivative $\partial^{1: m} f$ exists then

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \mathbf{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u}
$$

Smoothness Conditions

- QMC attains an error rate of $O\left(n^{-1}(\log n)^{m-1}\right)$, if $f \in$ BVHK.
- If the mixed partial derivative $\partial^{1: m} f$ exists then

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \mathbf{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u} .
$$

[Owen (2005)]

- For scrambled nets to attain $O\left(n^{-3 / 2}(\log n)^{(m-1) / 2}\right), f$ must be smooth in the following sense.

$$
\left\|\partial^{u} f\right\|_{2}^{2} \equiv \int\left(\partial^{u} f(\boldsymbol{x})\right)^{2} \mathrm{~d} \boldsymbol{x}<\infty, \quad \forall u \subseteq 1: m
$$

[Dick and Pillichshammer (2010)]

Function Composition

- We want condition under which $f \circ \tau:[0,1]^{m} \rightarrow \mathbb{R}^{d} \rightarrow \mathbb{R}$ is in BVHK.

Function Composition

- We want condition under which $f \circ \tau:[0,1]^{m} \rightarrow \mathbb{R}^{d} \rightarrow \mathbb{R}$ is in BVHK.
- If $d=m=1$ we reduce to the case of ordinary BV.

Function Composition

- We want condition under which $f \circ \tau:[0,1]^{m} \rightarrow \mathbb{R}^{d} \rightarrow \mathbb{R}$ is in BVHK.
- If $d=m=1$ we reduce to the case of ordinary BV.
- If τ is of bounded variation and f is Lipschitz, then $f \circ \tau$ is of bounded variation.

Function Composition

- We want condition under which $f \circ \tau:[0,1]^{m} \rightarrow \mathbb{R}^{d} \rightarrow \mathbb{R}$ is in BVHK.
- If $d=m=1$ we reduce to the case of ordinary BV.
- If τ is of bounded variation and f is Lipschitz, then $f \circ \tau$ is of bounded variation.
[Josephy (1981)]
- Not the case for BVHK in higher dimensions.

A counter-example

A counter-example

- Let τ be the identity map on $[0,1]^{2}$ so that both τ_{1} and τ_{2} are in BVHK.

A counter-example

- Let τ be the identity map on $[0,1]^{2}$ so that both τ_{1} and τ_{2} are in BVHK.
- Then we construct a Lipschitz function $f:[0,1]^{2} \rightarrow \mathbb{R}$ with $f \circ \tau=f \notin$ BVHK.

Sierpenkski function

Figure: The plot on the left shows the square partition \mathcal{P} which is repeated in a recursive manner. The right figure shows the function as a 2 -dimensional projection for $k=3$. Each such pyramidal structure has a height of half the length of its base square.

Results

Lemma 1

The function f is Lipschitz on $[0,1]^{2}$ with respect to the Euclidean norm.

Lemma 2

The function $f \notin \mathrm{BVHK}$. If we define a d-dimensional function $f_{d}\left(x_{1}, \ldots, x_{d}\right):=f\left(x_{1}, x_{2}\right)$, then f_{d} is Lipschitz on $[0,1]^{d}$ but $f_{d} \notin$ BVHK.

Faa di Bruno formula

Faa di Bruno formula

- Remember that,

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \mathbf{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u}
$$

Faa di Bruno formula

- Remember that,

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u} .
$$

- Study $f \circ \tau$ using the Multivariate Faa di Bruno formula due to Constantine and Savits (1996).

Faa di Bruno formula

- Remember that,

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u}
$$

- Study $f \circ \tau$ using the Multivariate Faa di Bruno formula due to Constantine and Savits (1996).
- $\tau:[0,1]^{m} \rightarrow \mathcal{X} \subset \mathbb{R}^{d}$ and $f: \mathcal{X} \rightarrow \mathbb{R}$.

Faa di Bruno formula

- Remember that,

$$
\mathrm{V}_{\mathrm{HK}}(f) \leq \sum_{u \neq \emptyset} \int_{[0,1]^{|u|}}\left|\partial^{u} f\left(\boldsymbol{x}_{u}: \mathbf{1}_{-u}\right)\right| \mathrm{d} \boldsymbol{x}_{u} .
$$

- Study $f \circ \tau$ using the Multivariate Faa di Bruno formula due to Constantine and Savits (1996).
- $\tau:[0,1]^{m} \rightarrow \mathcal{X} \subset \mathbb{R}^{d}$ and $f: \mathcal{X} \rightarrow \mathbb{R}$.
- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{N}_{0}^{d}$. Then $f_{\boldsymbol{\lambda}}$ is the derivative of f taken λ_{i} times with respect to x_{i}.

Multivariate Faa di Bruno formula

Multivariate Faa di Bruno formula

- For any $v \subseteq 1: m$,

$$
\partial^{v}(f \circ \tau)=\sum_{\substack{\lambda \in \mathbb{N}^{d} \\ 1 \leq|\lambda| \leq|v|}} f_{\lambda} \sum_{s=1}^{|v|} \sum_{\left(\ell_{r}, k_{r}\right) \in \widetilde{\mathrm{KL}}(s, v, \lambda)} \prod_{r=1}^{s} \partial^{\ell_{r}} \tau_{k_{r}}
$$

where $\widetilde{\mathrm{KL}}(s, v, \boldsymbol{\lambda})$ equals

$$
\begin{gathered}
\left\{\left(\ell_{r}, k_{r}\right), r=1, \ldots, s, \mid \ell_{r} \subseteq 1: m, k_{r} \in 1: d, \cup_{r=1}^{s} \ell_{r}=v,\right. \\
\left.\ell_{r} \cap \ell_{r^{\prime}}=\emptyset \text { for } r \neq r^{\prime} \text { and }\left|\left\{j \in 1: s \mid k_{j}=i\right\}\right|=\lambda_{i}\right\} .
\end{gathered}
$$

Overview

(1) Smoothness Conditions

- Function Composition
(2) Necessary and Sufficient Conditions
(3) Counter-Examples
- Infinite Hardy-Krause Variation
- Non L² Mapping

4 Non-Uniform Transformations

Main Result for QMC point set

Theorem 1. B and Owen (2016)
Let $\tau(\boldsymbol{u})$ be as described. Assume that

$$
\int_{[0,1]} \prod_{r=1}^{s}\left|\partial^{\ell_{r}} \tau_{k_{r}}\left(\boldsymbol{u}_{v}: \mathbf{1}_{-v}\right)\right| \mathrm{d} \boldsymbol{u}_{v}<\infty
$$

holds under appropriate set-up. Then $f \circ \tau \in$ BVHK for all $f \in C^{m}(\mathcal{X})$.

Sufficient Condition

Corollary 1. B and Owen (2016)

If $\partial^{v} \tau_{j}\left(\boldsymbol{u}_{v}: 1_{-v}\right) \in L^{p_{j}}\left([0,1]^{|v|}\right)$ for all j and $v \subseteq 1: m$, where $p_{j} \in[1, \infty]$ and $\sum_{j=1}^{d} 1 / p_{j} \leq 1$ then $f \circ \tau \in$ BVHK for all $f \in C^{m}(\mathcal{X})$.

Sufficient Condition

Corollary 1. B and Owen (2016)

If $\partial^{v} \tau_{j}\left(\boldsymbol{u}_{v}: 1_{-v}\right) \in L^{p_{j}}\left([0,1]^{|v|}\right)$ for all j and $v \subseteq 1: m$, where $p_{j} \in[1, \infty]$ and $\sum_{j=1}^{d} 1 / p_{j} \leq 1$ then $f \circ \tau \in \operatorname{BVHK}$ for all $f \in C^{m}(\mathcal{X})$.

- Proof: Generalized Holder inequality and $L^{p_{j}}$ conditions establish,

$$
\int_{[0,1]|v|} \prod_{r=1}^{s}\left|\partial^{\ell_{r}} \tau_{k_{r}}\left(\boldsymbol{u}_{v}: 1_{-v}\right)\right| \mathrm{d} \boldsymbol{u}_{v}<\infty
$$

Main Result for RQMC (Scrambled Net)

Theorem 2. B and Owen (2016)
Let $\tau(\boldsymbol{u})$ be as described. Assume that

$$
\int_{[0,1]^{d}} \prod_{r=1}^{s}\left|\partial^{\ell_{r}} \tau_{k_{r}}(\boldsymbol{u})\right|^{2} \mathrm{~d} \boldsymbol{u}<\infty
$$

holds under appropriate set-up. Then $f \circ \tau$ is smooth enough to benefit from randomization.

Sufficient Condition

Corollary 2. B and Owen (2016)

If $\partial^{v} \tau_{j} \in L^{p_{j}}\left([0,1]^{m}\right)$ for all j and $v \subseteq 1: m$, where $p_{j} \in[1, \infty]$. and $\sum_{j=1}^{d} 1 / p_{j} \leq 1 / 2$, then $f \circ \tau$ is smooth enough to benefit from randomization.

Necessary Conditions

Necessary Conditions

- Much more subtle.

Necessary Conditions

- Much more subtle.
- f can repair any problem by being constant.

Necessary Conditions

- Much more subtle.
- f can repair any problem by being constant.
- τ is unsuitable for QMC when one or more of the components τ_{j} has $\partial^{v} \tau_{j}\left(\cdot: \mathbf{1}_{-v}\right) \notin L^{1}$ for some $v \subset 1: m$.
- Thus $\tau_{j} \notin$ BVHK.

Necessary Conditions

- Much more subtle.
- f can repair any problem by being constant.
- τ is unsuitable for QMC when one or more of the components τ_{j} has $\partial^{v} \tau_{j}\left(\cdot: \mathbf{1}_{-v}\right) \notin L^{1}$ for some $v \subset 1: m$.
- Thus $\tau_{j} \notin$ BVHK.
- Similarly, if $\partial^{v} \tau_{j} \notin L^{2}$ for any j and v, then τ is not a good candidate for RQMC (scrambled nets).

Overview

(1) Smoothness Conditions

- Function Composition
(2) Necessary and Sufficient Conditions
(3) Counter-Examples
- Infinite Hardy-Krause Variation
- Non L^{2} Mapping

4. Non-Uniform Transformations

Map from $[0,1]^{3}$ to Equilateral Triangle in 3-dimensions

Map from $[0,1]^{3}$ to Equilateral Triangle in 3-dimensions

- Let $T^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right\}$ be an equilateral triangle in 3- dimensions. Consider the map $\tau:[0,1]^{3} \rightarrow T^{3}$ defined by

$$
\tau_{j}\left(u_{1}, u_{2}, u_{3}\right)=\frac{\log u_{j}}{\sum_{i=1}^{3} \log u_{i}} \quad j=1,2,3
$$

Map from $[0,1]^{3}$ to Equilateral Triangle in 3-dimensions

- Let $T^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right\}$ be an equilateral triangle in 3- dimensions. Consider the map $\tau:[0,1]^{3} \rightarrow T^{3}$ defined by

$$
\begin{aligned}
& \tau_{j}\left(u_{1}, u_{2}, u_{3}\right)=\frac{\log u_{j}}{\sum_{i=1}^{3} \log u_{i}} \quad j=1,2,3 . \\
& \int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2} \tau_{1}}{\partial u_{1} \partial u_{2}}\right|_{u_{3}=1} d u_{1} d u_{2}=\infty
\end{aligned}
$$

Map from $[0,1]^{3}$ to Equilateral Triangle in 3-dimensions

- Let $T^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right\}$ be an equilateral triangle in 3- dimensions. Consider the map $\tau:[0,1]^{3} \rightarrow T^{3}$ defined by

$$
\begin{gathered}
\tau_{j}\left(u_{1}, u_{2}, u_{3}\right)=\frac{\log u_{j}}{\sum_{i=1}^{3} \log u_{i}} \quad j=1,2,3 . \\
\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2} \tau_{1}}{\partial u_{1} \partial u_{2}}\right|_{u_{3}=1} d u_{1} d u_{2}=\infty
\end{gathered}
$$

- Thus $\tau \notin$ BVHK.

Map from $[0,1]^{d}$ to Sphere in d-dimensions via Inverse Gaussian CDF

- The mapping from $[0,1]^{d}$ to $\mathcal{X}=\mathbb{S}^{d-1}$ is

$$
\tau_{j}(\boldsymbol{u})=\frac{\Phi^{-1}\left(u_{j}\right)}{\sqrt{\sum_{i=1}^{d} \Phi^{-1}\left(u_{i}\right)^{2}}}
$$

Map from $[0,1]^{d}$ to Sphere in d-dimensions via Inverse Gaussian CDF

- The mapping from $[0,1]^{d}$ to $\mathcal{X}=\mathbb{S}^{d-1}$ is

$$
\tau_{j}(\boldsymbol{u})=\frac{\Phi^{-1}\left(u_{j}\right)}{\sqrt{\sum_{i=1}^{d} \Phi^{-1}\left(u_{i}\right)^{2}}}
$$

$$
\int\left|\partial^{1: d} \tau_{j}\right| d u=\infty
$$

Map from $[0,1]^{d}$ to Sphere in d-dimensions via Inverse Gaussian CDF

- The mapping from $[0,1]^{d}$ to $\mathcal{X}=\mathbb{S}^{d-1}$ is

$$
\tau_{j}(\boldsymbol{u})=\frac{\Phi^{-1}\left(u_{j}\right)}{\sqrt{\sum_{i=1}^{d} \Phi^{-1}\left(u_{i}\right)^{2}}}
$$

$$
\int\left|\partial^{1: d} \tau_{j}\right| d u=\infty
$$

- Thus $\tau \notin$ BVHK.

Non L^{2} Mapping

- "Necessary" Condition : $\partial^{v} \tau_{j} \in L^{2}$ to benefit from RQMC.

Non L² Mapping

- "Necessary" Condition : $\partial^{v} \tau_{j} \in L^{2}$ to benefit from RQMC.
- Fang and Wang (1994) gave mappings to the following domains

$$
\begin{aligned}
A_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): 0 \leq x_{1} \leq \ldots \leq x_{d} \leq 1\right\} \\
B_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2} \leq 1\right\} \\
U_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2}=1\right\} \\
V_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d} \leq 1\right\} \\
T_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d}=1\right\}
\end{aligned}
$$

Non L^{2} Mapping

- "Necessary" Condition : $\partial^{v} \tau_{j} \in L^{2}$ to benefit from RQMC.
- Fang and Wang (1994) gave mappings to the following domains

$$
\begin{aligned}
A_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): 0 \leq x_{1} \leq \ldots \leq x_{d} \leq 1\right\} \\
B_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2} \leq 1\right\} \\
U_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2}=1\right\} \\
V_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d} \leq 1\right\} \\
T_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d}=1\right\}
\end{aligned}
$$

- Each $\tau \in B V H K$.

Non L^{2} Mapping

- "Necessary" Condition : $\partial^{v} \tau_{j} \in L^{2}$ to benefit from RQMC.
- Fang and Wang (1994) gave mappings to the following domains

$$
\begin{aligned}
A_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): 0 \leq x_{1} \leq \ldots \leq x_{d} \leq 1\right\} \\
B_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2} \leq 1\right\} \\
U_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}^{2}+\ldots+x_{d}^{2}=1\right\} \\
V_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d} \leq 1\right\} \\
T_{d} & =\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{+}^{d}: x_{1}+\ldots+x_{d}=1\right\}
\end{aligned}
$$

- Each $\tau \in B V H K$.
- None of them satisfy $\partial^{v} \tau_{j} \in L^{2}$.

Overview

(1) Smoothness Conditions

- Function Composition
(2) Necessary and Sufficient Conditions
(3) Counter-Examples
- Infinite Hardy-Krause Variation
- Non L^{2} Mapping

4 Non-Uniform Transformations

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.
- Assume the measure P has a density p.

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.
- Assume the measure P has a density p.
- Use τ on $[0,1]^{m}$ which yields $\boldsymbol{x}=\tau(\boldsymbol{u}) \sim q$ on \mathcal{X} when $\boldsymbol{u} \sim \mathbf{U}[0,1]^{m}$.

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.
- Assume the measure P has a density p.
- Use τ on $[0,1]^{m}$ which yields $\boldsymbol{x}=\tau(\boldsymbol{u}) \sim q$ on \mathcal{X} when $\boldsymbol{u} \sim \mathbf{U}[0,1]^{m}$.
- We estimate μ by

$$
\hat{\mu}_{q}^{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(\tau\left(\boldsymbol{u}_{i}\right)\right) p\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}{q\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{f p}{q} \circ \tau\right)\left(\boldsymbol{u}_{i}\right) .
$$

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.
- Assume the measure P has a density p.
- Use τ on $[0,1]^{m}$ which yields $\boldsymbol{x}=\tau(\boldsymbol{u}) \sim q$ on \mathcal{X} when $\boldsymbol{u} \sim \mathbf{U}[0,1]^{m}$.
- We estimate μ by

$$
\hat{\mu}_{q}^{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(\tau\left(\boldsymbol{u}_{i}\right)\right) p\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}{q\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{f p}{q} \circ \tau\right)\left(\boldsymbol{u}_{i}\right) .
$$

- If $q(\boldsymbol{x})>0$ whenever $f(\boldsymbol{x}) p(\boldsymbol{x}) \neq 0$ (and if μ exists) then $\mathbb{E}\left(\hat{\mu}_{q}^{n}\right)=\mu$.

Importance Sampling

- Aim : Estimate $\mu=\int f(x) d P$.
- Assume the measure P has a density p.
- Use τ on $[0,1]^{m}$ which yields $\boldsymbol{x}=\tau(\boldsymbol{u}) \sim q$ on \mathcal{X} when $\boldsymbol{u} \sim \mathbf{U}[0,1]^{m}$.
- We estimate μ by

$$
\hat{\mu}_{q}^{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(\tau\left(\boldsymbol{u}_{i}\right)\right) p\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}{q\left(\tau\left(\boldsymbol{u}_{i}\right)\right)}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{f p}{q} \circ \tau\right)\left(\boldsymbol{u}_{i}\right) .
$$

- If $q(\boldsymbol{x})>0$ whenever $f(\boldsymbol{x}) p(\boldsymbol{x}) \neq 0$ (and if μ exists) then $\mathbb{E}\left(\hat{\mu}_{q}^{n}\right)=\mu$.
- To apply the Koksma-Hlawka inequality we only need $(f p / q) \circ \tau \in$ BVHK.

Sufficient Condition for Importance Sampling

Corollary 3. B and Owen (2016)

Under the above setup, assume τ satisfies the conditions of Theorem 1 and that $f p / q \in C^{m}(\mathcal{X})$. Then, for a low-discrepancy point set $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in $[0,1]^{m}$,

$$
\left|\int_{\mathcal{X}} f(\boldsymbol{x}) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\frac{1}{n} \sum_{i=1}^{n}\left(\frac{f p}{q} \circ \tau\right)\left(\boldsymbol{u}_{i}\right)\right|=O\left(\frac{(\log n)^{m-1}}{n}\right) .
$$

Sufficient Condition for Importance Sampling

Corollary 3. B and Owen (2016)

Under the above setup, assume τ satisfies the conditions of Theorem 1 and that $f p / q \in C^{m}(\mathcal{X})$. Then, for a low-discrepancy point set $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in $[0,1]^{m}$,

$$
\left|\int_{\mathcal{X}} f(\boldsymbol{x}) p(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\frac{1}{n} \sum_{i=1}^{n}\left(\frac{f p}{q} \circ \tau\right)\left(\boldsymbol{u}_{i}\right)\right|=O\left(\frac{(\log n)^{m-1}}{n}\right) .
$$

Proof.

Follows from Theorem 1 and the Koksma-Hlawka inequality.

Sufficient Condition for Importance Sampling

- The result works when \mathcal{X} is bounded. Especially for spiky integrands on compact sets \mathcal{X}.

Sufficient Condition for Importance Sampling

- The result works when \mathcal{X} is bounded. Especially for spiky integrands on compact sets \mathcal{X}.
- Note that if $f \in C^{m}$, then $f p / q \in C^{m}$ as long as $p / q \in C^{m}$.

Sufficient Condition for Importance Sampling

- The result works when \mathcal{X} is bounded. Especially for spiky integrands on compact sets \mathcal{X}.
- Note that if $f \in C^{m}$, then $f p / q \in C^{m}$ as long as $p / q \in C^{m}$.
- Take $q(\boldsymbol{x}) \propto p(\boldsymbol{x}) \exp \left(\theta^{T} \boldsymbol{x}\right)$ for a parameter $\theta \in \mathbb{R}^{d}$. Then $p / q \in C^{m}(\mathcal{X})$ when \mathcal{X} is bounded.

Conclusion

- We give sufficient conditions for $V_{H K}(f \circ \tau)<\infty$ as well as well the transformation can benefit from RQMC.
- For most of the common known transformations there is no guarantee of QMC rate. Need constructive proof in almost all spaces and regions.
- For general measures, it might be possible to get QMC rate.

Thank you!

- For this amazing graduation gift!

